Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Graph Convolutional Networks Embedding Textual Structure Information for Relation Extraction

    Chuyuan Wei*, Jinzhe Li, Zhiyuan Wang, Shanshan Wan, Maozu Guo

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 3299-3314, 2024, DOI:10.32604/cmc.2024.047811 - 15 May 2024

    Abstract Deep neural network-based relational extraction research has made significant progress in recent years, and it provides data support for many natural language processing downstream tasks such as building knowledge graph, sentiment analysis and question-answering systems. However, previous studies ignored much unused structural information in sentences that could enhance the performance of the relation extraction task. Moreover, most existing dependency-based models utilize self-attention to distinguish the importance of context, which hardly deals with multiple-structure information. To efficiently leverage multiple structure information, this paper proposes a dynamic structure attention mechanism model based on textual structure information, which deeply… More >

  • Open Access

    ARTICLE

    Aspect-Level Sentiment Analysis Based on Deep Learning

    Mengqi Zhang1, Jiazhao Chai2, Jianxiang Cao3, Jialing Ji3, Tong Yi4,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3743-3762, 2024, DOI:10.32604/cmc.2024.048486 - 26 March 2024

    Abstract In recent years, deep learning methods have developed rapidly and found application in many fields, including natural language processing. In the field of aspect-level sentiment analysis, deep learning methods can also greatly improve the performance of models. However, previous studies did not take into account the relationship between user feature extraction and contextual terms. To address this issue, we use data feature extraction and deep learning combined to develop an aspect-level sentiment analysis method. To be specific, we design user comment feature extraction (UCFE) to distill salient features from users’ historical comments and transform them More >

Displaying 1-10 on page 1 of 2. Per Page