Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Fully Automated Density-Based Clustering Method

    Bilal Bataineh*, Ahmad A. Alzahrani

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1833-1851, 2023, DOI:10.32604/cmc.2023.039923 - 30 August 2023

    Abstract Cluster analysis is a crucial technique in unsupervised machine learning, pattern recognition, and data analysis. However, current clustering algorithms suffer from the need for manual determination of parameter values, low accuracy, and inconsistent performance concerning data size and structure. To address these challenges, a novel clustering algorithm called the fully automated density-based clustering method (FADBC) is proposed. The FADBC method consists of two stages: parameter selection and cluster extraction. In the first stage, a proposed method extracts optimal parameters for the dataset, including the epsilon size and a minimum number of points thresholds. These parameters More >

  • Open Access

    ARTICLE

    Adaptive Density-Based Spatial Clustering of Applications with Noise (ADBSCAN) for Clusters of Different Densities

    Ahmed Fahim1,2,*

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 3695-3712, 2023, DOI:10.32604/cmc.2023.036820 - 31 March 2023

    Abstract Finding clusters based on density represents a significant class of clustering algorithms. These methods can discover clusters of various shapes and sizes. The most studied algorithm in this class is the Density-Based Spatial Clustering of Applications with Noise (DBSCAN). It identifies clusters by grouping the densely connected objects into one group and discarding the noise objects. It requires two input parameters: epsilon (fixed neighborhood radius) and MinPts (the lowest number of objects in epsilon). However, it can’t handle clusters of various densities since it uses a global value for epsilon. This article proposes an adaptation of the… More >

  • Open Access

    ARTICLE

    Encephalitis Detection from EEG Fuzzy Density-Based Clustering Model with Multiple Centroid

    Hanan Abdullah Mengash1, Alaaeldin M. Hafez2, Hanan A. Hosni Mahmoud3,*

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 3129-3140, 2023, DOI:10.32604/iasc.2023.030836 - 17 August 2022

    Abstract Encephalitis is a brain inflammation disease. Encephalitis can yield to seizures, motor disability, or some loss of vision or hearing. Sometimes, encephalitis can be a life-threatening and proper diagnosis in an early stage is very crucial. Therefore, in this paper, we are proposing a deep learning model for computerized detection of Encephalitis from the electroencephalogram data (EEG). Also, we propose a Density-Based Clustering model to classify the distinctive waves of Encephalitis. Customary clustering models usually employ a computed single centroid virtual point to define the cluster configuration, but this single point does not contain adequate More >

Displaying 1-10 on page 1 of 3. Per Page