Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Clustering Algorithms: Taxonomy, Comparison, and Empirical Analysis in 2D Datasets

    Samih M. Mostafa1,2,*

    Journal on Artificial Intelligence, Vol.2, No.4, pp. 189-215, 2020, DOI:10.32604/jai.2020.014944 - 31 December 2020

    Abstract Because of the abundance of clustering methods, comparing between methods and determining which method is proper for a given dataset is crucial. Especially, the availability of huge experimental datasets and transactional and the emerging requirements for data mining and the like needs badly for clustering algorithms that can be applied in various domains. This paper presents essential notions of clustering and offers an overview of the significant features of the most common representative clustering algorithms of clustering categories presented in a comparative way. More specifically the study is based on the numerical type of the More >

Displaying 1-10 on page 1 of 1. Per Page