Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Exploring Motor Imagery EEG: Enhanced EEG Microstate Analysis with GMD-Driven Density Canopy Method

    Xin Xiong1, Jing Zhang1, Sanli Yi1, Chunwu Wang2, Ruixiang Liu3, Jianfeng He1,*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4659-4681, 2024, DOI:10.32604/cmc.2024.050528 - 20 June 2024

    Abstract The analysis of microstates in EEG signals is a crucial technique for understanding the spatiotemporal dynamics of brain electrical activity. Traditional methods such as Atomic Agglomerative Hierarchical Clustering (AAHC), K-means clustering, Principal Component Analysis (PCA), and Independent Component Analysis (ICA) are limited by a fixed number of microstate maps and insufficient capability in cross-task feature extraction. Tackling these limitations, this study introduces a Global Map Dissimilarity (GMD)-driven density canopy K-means clustering algorithm. This innovative approach autonomously determines the optimal number of EEG microstate topographies and employs Gaussian kernel density estimation alongside the GMD index for… More >

  • Open Access

    ARTICLE

    Fuzzy C-Means Algorithm Based on Density Canopy and Manifold Learning

    Jili Chen1,2, Hailan Wang2, Xiaolan Xie1,2,*

    Computer Systems Science and Engineering, Vol.48, No.3, pp. 645-663, 2024, DOI:10.32604/csse.2023.037957 - 20 May 2024

    Abstract Fuzzy C-Means (FCM) is an effective and widely used clustering algorithm, but there are still some problems. considering the number of clusters must be determined manually, the local optimal solutions is easily influenced by the random selection of initial cluster centers, and the performance of Euclid distance in complex high-dimensional data is poor. To solve the above problems, the improved FCM clustering algorithm based on density Canopy and Manifold learning (DM-FCM) is proposed. First, a density Canopy algorithm based on improved local density is proposed to automatically deter-mine the number of clusters and initial cluster… More >

Displaying 1-10 on page 1 of 2. Per Page