Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (151)
  • Open Access

    ARTICLE

    Cooling and Optimization in the Groove of the Outer Rotor Hub Motor

    Zhuo Liu, Yecui Yan*

    Frontiers in Heat and Mass Transfer, Vol.22, No.5, pp. 1443-1460, 2024, DOI:10.32604/fhmt.2024.056091 - 30 October 2024

    Abstract The external rotor hub motor adopts direct drive mode, no deceleration drive device, and has a compact structure. Its axial size is smaller than that of a deceleration-driven hub motor, which greatly reduces the weight of the vehicle and increases the cruising range of the vehicle. Because of the limited special working environment and performance requirements, the hub motor has a small internal space and a large heat generation, so it puts forward higher requirements for heat dissipation capacity. For the external rotor hub motor, a new type of in-tank water-cooled structure of hub motor… More >

  • Open Access

    ARTICLE

    Factors Influencing Proppant Transportation and Hydraulic Fracture Conductivity in Deep Coal Methane Reservoirs

    Fan Yang1,2,*, Honggang Mi1,2, Jian Wu1,2, Qi Yang1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.11, pp. 2637-2656, 2024, DOI:10.32604/fdmp.2024.048574 - 28 October 2024

    Abstract The gas production of deep coalbed methane wells in Linxing-Shenfu block decreases rapidly, the water output is high, the supporting effect is poor, the effective supporting fracture size is limited, and the migration mechanism of proppant in deep coal reservoir is not clear at present. To investigate the migration behavior of proppants in complex fractures during the volume reconstruction of deep coal and rock reservoirs, an optimization test on the conductivity of low-density proppants and simulations of proppant migration in complex fractures of deep coal reservoirs were conducted. The study systematically analyzed the impact of… More >

  • Open Access

    PROCEEDINGS

    Topology Optimization of Mega-Casting Thin-Walled Structures of Vehicle Body with Stiffness Objective and Process Filling Constraints

    Jiayu Chen1, Yingchun Bai1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.3, pp. 1-2, 2024, DOI:10.32604/icces.2024.011393

    Abstract Mega-casting techniques are widely used to manufacture large piece of thin-walled structures for vehicle body in Automotive industries, especially with the rapid growing electric vehicle market. Topology optimization is effective design method to reach higher mechanical performance yet lightweight potential for casting structures [1-3]. Most of existing works is focused on geometric-type casting constraints such as drawn angle, partion line, undercut, and enclose holes. However, the challenges in mega-casting arise from the complexities in the casting process such as filling and solidification, and the corresponding defects have larger influences on the structural performances [4-6]. Partial… More >

  • Open Access

    PROCEEDINGS

    Concurrent Topology Optimization of Shell Structures with Multi-Configuration and Variable-Density Infill

    Wei Ji1, Yingchun Bai1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.3, pp. 1-2, 2024, DOI:10.32604/icces.2024.011338

    Abstract The superior stiffness-to-weight and strength-to-weight mechanical advantages of shell-infill structures can be fully exploited through concurrent design of the entire topology and infill configuration. This inherent design freedom can be guaranteed by additive manufacturing, through which complicated geometry can be fabricated. The existing approaches are typically focused on topology optimization with porous infill [1-3], un-prescribed lattice configuration with uniform density [4-8], or prescribed single lattice configuration with non-uniform density [9-10]. Towards higher performance yet lightweight, this work proposes a concurrent topology optimization approach to directly generate shell-infill structures in which the inner infill consists of… More >

  • Open Access

    ARTICLE

    Morphometric Attributes of Two Native Forage Species According to Water Source Distance in Semiarid Central Grasslands of Argentina

    Carla Etel Suárez1,*, María Sol Rossini1,3, Ernesto Francisco Atilio Morici1, Héctor Daniel Esterlich1,2

    Phyton-International Journal of Experimental Botany, Vol.93, No.8, pp. 2063-2074, 2024, DOI:10.32604/phyton.2024.053193 - 30 August 2024

    Abstract The semiarid grasslands of Argentina’s central region have been modified by domestic livestock grazing, both in their composition and structure. The increase in the proportion of woody and non-forage species and the decrease in forage species are some of the most evident results of this process. There is limited available information about the effect of differential grazing pressures on morphometric attributes of native species, and it also depends on the life histories of the species in this grassland. The objective of this work was to evaluate some morphometric aspects in the grasses Poa ligularis Nees ex… More >

  • Open Access

    ARTICLE

    Molecular Dynamics-Based Simulation of Polyethylene Pipe Degradation in High Temperature and High Pressure Conditions

    Guowei Feng1, Qing Li2,3, Yang Wang1,*, Nan Lin4, Sixi Zha1, Hang Dong1, Ping Chen5, Minjun Zheng6

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.9, pp. 2139-2161, 2024, DOI:10.32604/fdmp.2024.053941 - 23 August 2024

    Abstract High-density polyethylene (HDPE) pipes have gradually become the first choice for gas networks because of their excellent characteristics. As the use of pipes increases, there will unavoidably be a significant amount of waste generated when the pipes cease their operation life, which, if improperly handled, might result in major environmental contamination issues. In this study, the thermal degradation of polyethylene materials is simulated for different pressures (10, 50, 100, and 150 MPa) and temperatures (2300, 2500, 2700, and 2900 K) in the framework of Reactive Force Field (ReaxFF) molecular dynamics simulation. The main gas products,… More >

  • Open Access

    ARTICLE

    Influence of High-Density Bedding Plane Characteristics on Hydraulic Fracture Propagation in Shale Oil Reservoir

    Xiao Yan1,2,3, Di Wang1,2,4, Haitao Yu1,2,3,5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 3051-3071, 2024, DOI:10.32604/cmes.2024.051832 - 08 July 2024

    Abstract The existence of high-density bedding planes is a typical characteristic of shale oil reservoirs. Understanding the behavior of hydraulic fracturing in high-density laminated rocks is significant for promoting shale oil production. In this study, a hydraulic fracturing model considering tensile failure and frictional slip of the bedding planes is established within the framework of the unified pipe-interface element method (UP-IEM). The model developed for simulating the interaction between the hydraulic fracture and the bedding plane is validated by comparison with experimental results. The hydraulic fracturing patterns in sealed and unsealed bedding planes are compared. Additionally,… More >

  • Open Access

    ARTICLE

    Rheological Investigation on a Polypropylene/Low Density Polyethylene Blending Melt

    Huayong Liao1,2,3,*, Jing Gao1,2,3, Chunlin Liu1,2,3, Guoliang Tao1,2,3

    Journal of Polymer Materials, Vol.41, No.1, pp. 45-54, 2024, DOI:10.32604/jpm.2024.053021 - 21 June 2024

    Abstract Polymer blending with co-continuous morphology has garnered the interest of many researchers, but corresponding rheological models are rarely presented. In this study, the dynamic rheological behavior of a blend of polypropylene (PP) and low-density polyethylene (LDPE) in the ratio of 50/50 wt% is investigated, and a rheological model suggested by Yu et al. is used to fit the dynamic modulus. The rheological measurement shows that at low frequency, pure PP has higher complex viscosity and dynamic modulus than LDPE. SEM images reveal that the morphology among the 40/60 and 60/40 blends is non-dispersive. The fitting… More >

  • Open Access

    ARTICLE

    Exploring the effects of taurolidine on tumor weight and microvessel density in a murine model of osteosarcoma

    LISANNE K.A. NEIJENHUIS1,2,3,#, LEUTA L. NAUMANN4,#, SONIA A.M. FERKEL1, SAMUEL J.S. RUBIN1, STEPHAN ROGALLA1,*

    Oncology Research, Vol.32, No.7, pp. 1163-1172, 2024, DOI:10.32604/or.2024.050907 - 20 June 2024

    Abstract Background: Osteosarcoma is the most common malignant primary bone tumor. The prognosis for patients with disseminated disease remains very poor despite recent advancements in chemotherapy. Moreover, current treatment regimens bear a significant risk of serious side effects. Thus, there is an unmet clinical need for effective therapies with improved safety profiles. Taurolidine is an antibacterial agent that has been shown to induce cell death in different types of cancer cell lines. Methods: In this study, we examined both the antineoplastic and antiangiogenic effects of taurolidine in animal models of osteosarcoma. K7M2 murine osteosarcoma cells were… More >

  • Open Access

    ARTICLE

    Exploring Motor Imagery EEG: Enhanced EEG Microstate Analysis with GMD-Driven Density Canopy Method

    Xin Xiong1, Jing Zhang1, Sanli Yi1, Chunwu Wang2, Ruixiang Liu3, Jianfeng He1,*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4659-4681, 2024, DOI:10.32604/cmc.2024.050528 - 20 June 2024

    Abstract The analysis of microstates in EEG signals is a crucial technique for understanding the spatiotemporal dynamics of brain electrical activity. Traditional methods such as Atomic Agglomerative Hierarchical Clustering (AAHC), K-means clustering, Principal Component Analysis (PCA), and Independent Component Analysis (ICA) are limited by a fixed number of microstate maps and insufficient capability in cross-task feature extraction. Tackling these limitations, this study introduces a Global Map Dissimilarity (GMD)-driven density canopy K-means clustering algorithm. This innovative approach autonomously determines the optimal number of EEG microstate topographies and employs Gaussian kernel density estimation alongside the GMD index for… More >

Displaying 1-10 on page 1 of 151. Per Page