Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    Mechanical Properties of Copper with Dendritic Silver Inclusions: Insights from Molecular Dynamics Simulations

    Nicolás Amigo*

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 3665-3678, 2024, DOI:10.32604/cmc.2024.059895 - 19 December 2024

    Abstract This study explores the mechanical behavior of single-crystal copper with silver inclusions, focusing on the effects of dendritic and spherical geometries using molecular dynamics simulations. Uniaxial tensile tests reveal that dendritic inclusions lead to an earlier onset of plasticity due to the presence of high-strain regions at the complex inclusion/matrix interfaces, whereas spherical inclusions exhibit delayed plasticity associated with their symmetric geometry and homogeneous strain distribution. During the plastic regime, the dislocation density is primarily influenced by the volume fraction of silver inclusions rather than their shape, with spherical inclusions showing the highest densities due… More >

  • Open Access

    PROCEEDINGS

    Ultrasound Overcomes Dendrite Puncture in Aqueous Zinc Batteries

    Fenghui Wang1,*, Hongye Zhang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.012441

    Abstract Aqueous zinc batteries have attracted wide interest due to the high safety of the non-flammable electrolyte. However, the inhomogeneous metal plating during the charging and discharging process generates uncontrollable dendrite growth on the anode surface, which seriously threatens the performance and lifetime of the battery. Herein, we provide a physical method to fragment zinc dendrites by using ultrasound to induce cavitation effects in the electrolyte, which can effectively improve the dielectric structure defects inside the battery and reduce the risk of short circuit. The experimental results show that the roughness and height of zinc deposits More >

  • Open Access

    ARTICLE

    Effect of metal cations on the conductivity and interfacial stability of Li7P3S10.7Br0.3 sulfide solid-state electrolytes

    J. H. Zhoua, S. H. Caob,*, X. Y. Lia, C. Y. Shena, M. Congb

    Chalcogenide Letters, Vol.20, No.4, pp. 301-313, 2023, DOI:10.15251/CL.2023.204.301

    Abstract The development of sulfide solid electrolyte is limited by the interface instability with lithium metal and low ionic conductivity. In this work, the effects of doping SiS2, SnS, ZnS and MnS on the ionic conductivity and interfacial stability of sulfide electrolytes are systematically investigated. The conductivity of Li7P2.9Sn0.1S10.7Br0.3 solid electrolyte was as high as 1.67 mS cm-1 . Furthermore, it is found that the critical current density was proportional to the resistivity of the doping element. The critical current density of the electrolyte was significantly increased by electronically insulating Si doping, reaching 0.858 mA cm-2. . More >

  • Open Access

    ARTICLE

    A Deterministic Mechanism for Side-branching in Dendritic Growth

    Shuwang Li1, Xiangrong Li1, John Lowengrub1,2, Martin Glicksman3

    FDMP-Fluid Dynamics & Materials Processing, Vol.4, No.1, pp. 27-42, 2008, DOI:10.3970/fdmp.2008.004.027

    Abstract In this paper, we suggest a deterministic mechanism for the generation and development of side-branches in dendritic growth. The present authors investigated recently [Glicksman, Lowengrub, and Li (2006)] the existence of such a deterministic branching mechanism induced through the Gibbs-Thomson-Herring (GTH [Herring (1951)]) anisotropic capillary boundary condition. In this paper, we focus our study on an anisotropic kinetic boundary condition. We develop and apply accurate boundary integral methods in 2D and 3D, in which a time and space rescaling scheme is implemented, that are capable of separating the dynamics of growth from those of morphology More >

  • Open Access

    ARTICLE

    Thermocapillary Flow and Phase Change in Some Widespread Materials Processes

    Gustav Amberg1, Junichiro Shiomi2

    FDMP-Fluid Dynamics & Materials Processing, Vol.1, No.1, pp. 81-96, 2005, DOI:10.3970/fdmp.2005.001.081

    Abstract A few issues in materials science are reviewed with regard to the importance of fluid flows. The effect of convection on generic solidification problems is discussed. One relevant class of flows in melts is those driven by surface tension gradients. In welding this thermo- or solutocapillary flow will determine the penetration depth, and will depend very sensitively on the composition of the material, through the dependence of surface tension on temperature, presence of surfactants, etc. In crystal growth the convective motion in the melt may cause instabilities that are often undesired in practical processes. The More >

Displaying 1-10 on page 1 of 5. Per Page