Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (31)
  • Open Access

    ARTICLE

    Optimal Allocation of Multiple Energy Storage Capacity in Industrial Park Considering Demand Response and Laddered Carbon Trading

    Jingshuai Pang1,2, Songcen Wang1, Hongyin Chen1,2,*, Xiaoqiang Jia1, Yi Guo1, Ling Cheng1, Xinhe Zhang1, Jianfeng Li1

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.070256 - 27 December 2025

    Abstract To achieve the goals of sustainable development of the energy system and the construction of a low-carbon society, this study proposes a multi-energy storage collaborative optimization strategy for industrial park that integrates the laddered carbon trading mechanism with demand response. Firstly, a dual dimensional DR model is constructed based on the characteristics of load elasticity. The alternative DR enables flexible substitution of energy loads through complementary conversion of electricity/heat/cold multi-energy sources, while the price DR relies on time-of-use electricity price signals to guide load spatiotemporal migration; Secondly, the LCT mechanism is introduced to achieve optimal… More >

  • Open Access

    ARTICLE

    Bi-Level Collaborative Optimization of Electricity-Carbon Integrated Demand Response for Energy-Intensive Industries under Source-Load Interaction

    Huaihu Wang1, Wen Chen2, Jin Yang1, Rui Su1, Jiale Li3, Liao Yuan3, Zhaobin Du3,*, Yujie Meng3

    Energy Engineering, Vol.122, No.9, pp. 3867-3890, 2025, DOI:10.32604/ee.2025.068062 - 26 August 2025

    Abstract Traditional demand response (DR) programs for energy-intensive industries (EIIs) primarily rely on electricity price signals and often overlook carbon emission factors, limiting their effectiveness in supporting low-carbon transitions. To address this challenge, this paper proposes an electricity–carbon integrated DR strategy based on a bi-level collaborative optimization framework that coordinates the interaction between the grid and EIIs. At the upper level, the grid operator minimizes generation and curtailment costs by optimizing unit commitment while determining real-time electricity prices and dynamic carbon emission factors. At the lower level, EIIs respond to these dual signals by minimizing their… More >

  • Open Access

    ARTICLE

    Hierarchical Optimal Scheduling Strategy for High Proportion New Energy Power Systems Considering Balanced Response to Grid Flexibility

    Cuiping Li1, Jiacheng Sun1, Qiang Li2, Qi Guo2, Junhui Li1,*, Shuo Yu2, Jingbo Wang2, Wenze Li2

    Energy Engineering, Vol.122, No.8, pp. 3055-3077, 2025, DOI:10.32604/ee.2025.064440 - 24 July 2025

    Abstract The penetration rate of new wind and photovoltaic energy in the power system has increased significantly, and the dramatic fluctuation of the net load of the grid has led to a severe lack of flexibility in the regional grid. This paper proposes a hierarchical optimal dispatch strategy for a high proportion of new energy power systems that considers the balanced response of grid flexibility. Firstly, various flexibility resource regulation capabilities on the source-load side are analyzed, and then flexibility demand and flexibility response are matched, and flexibility demand response assessment is proposed; then, a hierarchical… More >

  • Open Access

    ARTICLE

    Research on Flexible Load Aggregation and Coordinated Control Methods Considering Dynamic Demand Response

    Chun Xiao1,2,*

    Energy Engineering, Vol.122, No.7, pp. 2719-2750, 2025, DOI:10.32604/ee.2025.063782 - 27 June 2025

    Abstract In contemporary power systems, delving into the flexible regulation potential of demand-side resources is of paramount significance for the efficient operation of power grids. This research puts forward an innovative multivariate flexible load aggregation control approach that takes dynamic demand response into full consideration. In the initial stage, using generalized time-domain aggregation modelling for a wide array of heterogeneous flexible loads, including temperature-controlled loads, electric vehicles, and energy storage devices, a novel calculation method for their maximum adjustable capacities is devised. Distinct from conventional methods, this newly developed approach enables more precise and adaptable quantification… More >

  • Open Access

    ARTICLE

    Dispatchable Capability of Aggregated Electric Vehicle Charging in Distribution Systems

    Shiqian Wang1, Bo Liu1, Yuanpeng Hua1, Qiuyan Li1, Binhua Tang2,*, Jianshu Zhou2, Yue Xiang2

    Energy Engineering, Vol.122, No.1, pp. 129-152, 2025, DOI:10.32604/ee.2024.054867 - 27 December 2024

    Abstract This paper introduces a method for modeling the entire aggregated electric vehicle (EV) charging process and analyzing its dispatchable capabilities. The methodology involves developing a model for aggregated EV charging at the charging station level, estimating its physical dispatchable capability, determining its economic dispatchable capability under economic incentives, modeling its participation in the grid, and investigating the effects of different scenarios and EV penetration on the aggregated load dispatch and dispatchable capability. The results indicate that using economic dispatchable capability reduces charging prices by 9.7% compared to physical dispatchable capability and 9.3% compared to disorderly More >

  • Open Access

    ARTICLE

    Multi-Step Clustering of Smart Meters Time Series: Application to Demand Flexibility Characterization of SME Customers

    Santiago Bañales1,2,*, Raquel Dormido1, Natividad Duro1

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.1, pp. 869-907, 2025, DOI:10.32604/cmes.2024.054946 - 17 December 2024

    Abstract Customer segmentation according to load-shape profiles using smart meter data is an increasingly important application to vital the planning and operation of energy systems and to enable citizens’ participation in the energy transition. This study proposes an innovative multi-step clustering procedure to segment customers based on load-shape patterns at the daily and intra-daily time horizons. Smart meter data is split between daily and hourly normalized time series to assess monthly, weekly, daily, and hourly seasonality patterns separately. The dimensionality reduction implicit in the splitting allows a direct approach to clustering raw daily energy time series… More > Graphic Abstract

    Multi-Step Clustering of Smart Meters Time Series: Application to Demand Flexibility Characterization of SME Customers

  • Open Access

    ARTICLE

    Stackelberg Game-Based Optimal Dispatch for PEDF Park and Power Grid Interaction under Multiple Incentive Mechanisms

    Weidong Chen1,2,*, Yun Zhao3, Xiaorui Wu1,2, Ziwen Cai3, Min Guo1,2, Yuxin Lu3

    Energy Engineering, Vol.121, No.10, pp. 3075-3093, 2024, DOI:10.32604/ee.2024.051404 - 11 September 2024

    Abstract The integration of photovoltaic, energy storage, direct current, and flexible load (PEDF) technologies in building power systems is an important means to address the energy crisis and promote the development of green buildings. The friendly interaction between the PEDF systems and the power grid can promote the utilization of renewable energy and enhance the stability of the power grid. For this purpose, this work introduces a framework of multiple incentive mechanisms for a PEDF park, a building energy system that implements PEDF technologies. The incentive mechanisms proposed in this paper include both economic and noneconomic… More >

  • Open Access

    ARTICLE

    Optimal Scheduling Strategy of Source-Load-Storage Based on Wind Power Absorption Benefit

    Jie Ma1, Pengcheng Yue2, Haozheng Yu1, Yuqing Zhang3, Youwen Zhang1, Cuiping Li3, Junhui Li3,*, Wenwen Qin3, Yong Guo1

    Energy Engineering, Vol.121, No.7, pp. 1823-1846, 2024, DOI:10.32604/ee.2024.048225 - 11 June 2024

    Abstract In recent years, the proportion of installed wind power in the three north regions where wind power bases are concentrated is increasing, but the peak regulation capacity of the power grid in the three north regions of China is limited, resulting in insufficient local wind power consumption capacity. Therefore, this paper proposes a two-layer optimal scheduling strategy based on wind power consumption benefits to improve the power grid's wind power consumption capacity. The objective of the upper model is to minimize the peak-valley difference of the system load, which is mainly to optimize the system… More >

  • Open Access

    ARTICLE

    Research on Demand Response Potential of Adjustable Loads in Demand Response Scenarios

    Zhishuo Zhang, Xinhui Du*, Yaoke Shang, Jingshu Zhang, Wei Zhao, Jia Su

    Energy Engineering, Vol.121, No.6, pp. 1577-1605, 2024, DOI:10.32604/ee.2024.047706 - 21 May 2024

    Abstract To address the issues of limited demand response data, low generalization of demand response potential evaluation, and poor demand response effect, the article proposes a demand response potential feature extraction and prediction model based on data mining and a demand response potential assessment model for adjustable loads in demand response scenarios based on subjective and objective weight analysis. Firstly, based on the demand response process and demand response behavior, obtain demand response characteristics that characterize the process and behavior. Secondly, establish a feature extraction and prediction model based on data mining, including similar day clustering,… More >

  • Open Access

    ARTICLE

    A Distributionally Robust Optimization Scheduling Model for Regional Integrated Energy Systems Considering Hot Dry Rock Co-Generation

    Hao Qi1, Mohamed Sharaf2, Andres Annuk3, Adrian Ilinca4, Mohamed A. Mohamed5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1387-1404, 2024, DOI:10.32604/cmes.2024.048672 - 20 May 2024

    Abstract Hot dry rock (HDR) is rich in reserve, widely distributed, green, low-carbon, and has broad development potential and prospects. In this paper, a distributionally robust optimization (DRO) scheduling model for a regionally integrated energy system (RIES) considering HDR co-generation is proposed. First, the HDR-enhanced geothermal system (HDR-EGS) is introduced into the RIES. HDR-EGS realizes the thermoelectric decoupling of combined heat and power (CHP) through coordinated operation with the regional power grid and the regional heat grid, which enhances the system wind power (WP) feed-in space. Secondly, peak-hour loads are shifted using price demand response guidance More >

Displaying 1-10 on page 1 of 31. Per Page