Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Degradation of Alkaline Lignin in the Lactic Acid-Choline Chloride System under Mild Conditions

    Penghui Li1,2, Zhengwei Jiang2, Chi Yang2, Jianpeng Ren1,2, Bo Jiang1,2, Wenjuan Wu1,2,*

    Journal of Renewable Materials, Vol.11, No.5, pp. 2233-2248, 2023, DOI:10.32604/jrm.2023.025279 - 13 February 2023

    Abstract Lignin is a natural polymer, second only to cellulose in natural reserves. Degradation is one of the ways to achieve the high-value transformation of lignin. Deep eutectic solvent (DES) thermal degradation of lignin can be used as an excellent green degradation method. This paper introduces the degradation mechanism and effect of the lactic acid-choline chloride DES system in dissolving and degrading alkaline lignin, and the final solvent recovery. It can also be found from the scanning electron microscope (SEM) images that the surface of the degraded solid product is transformed from smooth to disordered. Fourier… More > Graphic Abstract

    Degradation of Alkaline Lignin in the Lactic Acid-Choline Chloride System under Mild Conditions

  • Open Access

    ARTICLE

    Chemically Modified Lignin: Correlation between Structure and Biodegradability

    Meifeng Wang1,2, Wubliker Dessie2, Hui Li1,*

    Journal of Renewable Materials, Vol.9, No.12, pp. 2119-2128, 2021, DOI:10.32604/jrm.2021.016811 - 22 June 2021

    Abstract Lignin is the most abundant heteropolymer based on aromatic subunits in nature. Large quantities of lignin are annually produced from pulping processes and biorefinery industries. Its unclearly defined structure and difficult biodegradation mainly limit its utilization. This work focused on the effect of hydroxylation of lignin on its microbial degradation. Butyloxy carbonyl-modified lignin, and hydroxylated-lignin were synthesized with di-tert-butyl dicarbonate and hydrogen peroxide, respectively, using lignin as raw material. The degradation of the modifiedlignins both by P. chrysosporium and B. subtilis were analyzed using UV-vis spectroscopy. Results revealed that the lignin degradation velocity raises with the increase More > Graphic Abstract

    Chemically Modified Lignin: Correlation between Structure and Biodegradability

Displaying 1-10 on page 1 of 2. Per Page