Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (222)
  • Open Access

    PROCEEDINGS

    Modelling and Simulation on Deformation Behaviour and Strengthening Mechanism of Multi-Principal Element Alloys

    Yang Chen1, Baobin Xie1, Weizheng Lu1, Jia Li1,*, Qihong Fang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-2, 2024, DOI:10.32604/icces.2024.011624

    Abstract In order to accurately predict and evaluate the mechanical properties of multi-principal element alloys (MPEAs), some new models and simulation methods need to be developed to solve the problems caused by its unique natural characteristics, such as severe lattice distortion. The existing models are based on the development of low concentration alloys, and cannot be well applied to MPEAs. Here, we develop i) the random field theory informed discrete dislocation dynamics simulations based on high-resolution transmission electron microscopy, to systematically clarify the role of heterogeneous lattice strain on the complex interactions between the dislocation loop… More >

  • Open Access

    PROCEEDINGS

    Multiscale Mechanics Design of Biodegradable Nano-Architected Materials: Toward a Sustainable Future

    Yuanzhen Hou1, YinBo Zhu1, Heng-an Wu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-2, 2024, DOI:10.32604/icces.2024.011353

    Abstract Traditional materials are emerging increasingly severe problems such as environmental pollution, non-renewability, and resource waste. As the most abundant natural biomass in nature, nanocellulose materials are expected to become a new generation of green, biodegradable, high-performance structural materials and contribute to sustainable development. Starting from the intrinsic relationship between hydrogen bonding network and microstructure deformation in nanocellulose, we performs the bottom-up multiscale mechanics methods, combing theoretical modeling, experimental characterization and material preparation, to reveal the physical mechanism and key characteristic parameters of the microstructure-regulated mechanical behaviors of nanocellulose materials, further establishing the cross-scale relationship between… More >

  • Open Access

    PROCEEDINGS

    Intrinsic Deformation Mechanism of Nanocellulose

    Rongzhuang Song1, Yinbo Zhu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.012598

    Abstract Kink defects are prevalent in nanocellulose. The existence of diverse kink patterns lacking molecular-scale resolution has caused uncertainty regarding the mechanisms governing the formation of different kinks in nanocellulose, including both reversible and irreversible kinks. The constraints resulting from these limitations often lead to significant confusion in exploring the structure-property relationships of nanocellulose. By integrating AFM experiments with molecular dynamics simulations, we examined the microstructure-dependent kink deformations in nanocellulose (Iβ phase) and the resultant local microstructural damages. In atomic force microscopy images, bent nanofibrils typically display minor curvatures, whereas kinked nanofibrils exhibit pronounced sharp bends,… More >

  • Open Access

    PROCEEDINGS

    Heat Generation, Plastic Deformation and Stresses Evolution in Inertia Friction Welding of Ni-Based Superalloy

    Chang-an Li1, Guoliang Qin1,*, Hao Wang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.012370

    Abstract The interactions among thermal history, plastic deformation and stress in inertia friction welding (IFW) under different welding parameters have been widely considered a crucial issue and still not fully understood. A novel 3D fully coupled finite element model based on a plastic friction pair was developed to simulate the IFW process of a Ni-based superalloy and reveal the omnidirectional thermo-mechanical coupling mechanism under different welding conditions. The numerical model successfully simulated the deceleration, deformation processes, and peak torsional moments in IFW and captured the evolution of temperature, plastic deformation, and stress. The simulated results were… More >

  • Open Access

    ARTICLE

    Shear Deformation of DLC Based on Molecular Dynamics Simulation and Machine Learning

    Chaofan Yao, Huanhuan Cao, Zhanyuan Xu*, Lichun Bai*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2107-2119, 2024, DOI:10.32604/cmes.2024.055743 - 31 October 2024

    Abstract Shear deformation mechanisms of diamond-like carbon (DLC) are commonly unclear since its thickness of several micrometers limits the detailed analysis of its microstructural evolution and mechanical performance, which further influences the improvement of the friction and wear performance of DLC. This study aims to investigate this issue utilizing molecular dynamics simulation and machine learning (ML) techniques. It is indicated that the changes in the mechanical properties of DLC are mainly due to the expansion and reduction of sp3 networks, causing the stick-slip patterns in shear force. In addition, cluster analysis showed that the sp2-sp3 transitions arise… More >

  • Open Access

    ARTICLE

    An Elastoplastic Fracture Model Based on Bond-Based Peridynamics

    Liping Zu1, Yaxun Liu1, Haoran Zhang1, Lisheng Liu2,*, Xin Lai2,*, Hai Mei2

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2349-2371, 2024, DOI:10.32604/cmes.2024.050488 - 08 July 2024

    Abstract Fracture in ductile materials often occurs in conjunction with plastic deformation. However, in the bond-based peridynamic (BB-PD) theory, the classic mechanical stress is not defined inherently. This makes it difficult to describe plasticity directly using the classical plastic theory. To address the above issue, a unified bond-based peridynamics model was proposed as an effective tool to solve elastoplastic fracture problems. Compared to the existing models, the proposed model directly describes the elastoplastic theory at the bond level without the need for additional calculation means. The results obtained in the context of this model are shown More >

  • Open Access

    ARTICLE

    Shield Excavation Analysis: Ground Settlement & Mechanical Responses in Complex Strata

    Baojun Qin1, Guangwei Zhang1, Wei Zhang2,*

    Structural Durability & Health Monitoring, Vol.18, No.3, pp. 341-360, 2024, DOI:10.32604/sdhm.2024.047405 - 15 May 2024

    Abstract This study delves into the effects of shield tunneling in complex coastal strata, focusing on how this construction method impacts surface settlement, the mechanical properties of adjacent rock, and the deformation of tunnel segments. It investigates the impact of shield construction on surface settlement, mechanical characteristics of nearby rock, and segment deformation in complex coastal strata susceptible to construction disturbances. Utilizing the Fuzhou Binhai express line as a case study, we developed a comprehensive numerical model using the ABAQUS finite element software. The model incorporates factors such as face force, grouting pressure, jack force, and… More >

  • Open Access

    ARTICLE

    Vers une transformation géométrique géocentrique des espaces urbains : la ville vue à partir du ou des centre(s)

    Cyril Enault*

    Revue Internationale de Géomatique, Vol.33, pp. 77-92, 2024, DOI:10.32604/rig.2024.046591 - 18 April 2024

    Abstract La théorie égocentrée est aujourd’hui bien connue des éthologues et des psychologues mais moins diffusée chez les géographes car elle reste encore à l’état de théorie abstraite. Ce papier se propose dans un premier temps de rendre opérationnel cette approche dans le cadre de travaux géographiques à l’échelle de l’individu. Puis, elle envisage d’établir le lien entre l’échelle individu et l’échelle de la ville avec comme objectif de produire des cartes déformées de la ville. More > Graphic Abstract

    Vers une transformation géométrique géocentrique des espaces urbains : la ville vue à partir du ou des centre(s)

  • Open Access

    ARTICLE

    Topology Optimization of Metamaterial Microstructures for Negative Poisson’s Ratio under Large Deformation Using a Gradient-Free Method

    Weida Wu, Yiqiang Wang, Zhonghao Gao, Pai Liu*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 2001-2026, 2024, DOI:10.32604/cmes.2023.046670 - 29 January 2024

    Abstract Negative Poisson’s ratio (NPR) metamaterials are attractive for their unique mechanical behaviors and potential applications in deformation control and energy absorption. However, when subjected to significant stretching, NPR metamaterials designed under small strain assumption may experience a rapid degradation in NPR performance. To address this issue, this study aims to design metamaterials maintaining a targeted NPR under large deformation by taking advantage of the geometry nonlinearity mechanism. A representative periodic unit cell is modeled considering geometry nonlinearity, and its topology is designed using a gradient-free method. The unit cell microstructural topologies are described with the… More >

  • Open Access

    ARTICLE

    Particle Discontinuous Deformation Analysis of Static and Dynamic Crack Propagation in Brittle Material

    Zediao Chen, Feng Liu*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 2215-2236, 2024, DOI:10.32604/cmes.2023.046618 - 29 January 2024

    Abstract Crack propagation in brittle material is not only crucial for structural safety evaluation, but also has a wide-ranging impact on material design, damage assessment, resource extraction, and scientific research. A thorough investigation into the behavior of crack propagation contributes to a better understanding and control of the properties of brittle materials, thereby enhancing the reliability and safety of both materials and structures. As an implicit discrete element method, the Discontinuous Deformation Analysis (DDA) has gained significant attention for its developments and applications in recent years. Among these developments, the particle DDA equipped with the bonded… More >

Displaying 1-10 on page 1 of 222. Per Page