Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (32)
  • Open Access

    PROCEEDINGS

    Macroscopic Deflections of Fatigue Crack in Direct Energy Deposited Ti–5Al–5Mo–5V–1Cr–1Fe

    Binchao Liu1,2,*, Qiuyi Wang2, Rui Bao2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.011835

    Abstract With the everlasting pursuit for weight reduction, efforts are devoted to applying additively manufactured (AM) structures in aeronautic vehicles; however, anomalous fatigue crack growth (FCG) behaviors, such as deflection and branching, are recently observed in macroscale, which deviates from the predictions by classic fracture mechanics. In this work, FCG behaviors of direct energy deposited (DED) Ti–5Al–5Mo–5V–1Cr–1Fe (TC18 in China) are investigated, in which fatigue crack deflections induced by combined impacts of loading and microstructures are revealed. Experiment results show that cracks are more deflected in columnar grains due to the preferred distribution of acicular a… More >

  • Open Access

    ARTICLE

    PDE Standardization Analysis and Solution of Typical Mechanics Problems

    Ningjie Wang1, Yihao Wang1, Yongle Pei2, Luxian Li1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 171-186, 2024, DOI:10.32604/cmes.2024.053520 - 20 August 2024

    Abstract A numerical approach is an effective means of solving boundary value problems (BVPs). This study focuses on physical problems with general partial differential equations (PDEs). It investigates the solution approach through the standard forms of the PDE module in COMSOL. Two typical mechanics problems are exemplified: The deflection of a thin plate, which can be addressed with the dedicated finite element module, and the stress of a pure bending beam that cannot be tackled. The procedure for the two problems regarding the three standard forms required by the PDE module is detailed. The results were More >

  • Open Access

    ARTICLE

    Theoretical Analysis on Deflection and Bearing Capacity of Prestressed Bamboo-Steel Composite Beams

    Qifeng Shan1,2, Ming Mao2, Yushun Li3,*

    Journal of Renewable Materials, Vol.12, No.1, pp. 149-166, 2024, DOI:10.32604/jrm.2023.029445 - 23 January 2024

    Abstract A theoretical analysis of upward deflection and midspan deflection of prestressed bamboo-steel composite beams is presented in this study. The deflection analysis considers the influences of interface slippage and shear deformation. Furthermore, the calculation model for flexural capacity is proposed considering the two stages of loading. The theoretical results are verified with 8 specimens considering different prestressed load levels, load schemes, and prestress schemes. The results indicate that the proposed theoretical analysis provides a feasible prediction of the deflection and bearing capacity of bamboo-steel composite beams. For deflection analysis, the method considering the slippage and More >

  • Open Access

    ARTICLE

    Effect of the Wick Deflection Angles on Heat Transfer Characteristics for the Flat LHP

    Zhuohuan Hu1, Sixian Sun1, Chengwei Yuan1, Yan Cao2, Jiayin Xu1,*

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 107-123, 2023, DOI:10.32604/fhmt.2023.041837 - 30 November 2023

    Abstract Loop Heat Pipe (LHP) is an efficient two-phase heat transfer device, which can be used in waste heat recovery, electronics cooling, aerospace and other fields. The wick, the core component of LHP, plays an important role in its start-up and operation. In this paper, the wick fabricated by 3D printing technology had uniform and interconnected pores. In the experiment, the position of the parallel vapor removal grooves was always fixed towards the vapor outlet. When the cylindrical wick was placed in the evaporator, the rotation angle relative to its central axis could be changed, thus… More > Graphic Abstract

    Effect of the Wick Deflection Angles on Heat Transfer Characteristics for the Flat LHP

  • Open Access

    PROCEEDINGS

    A Novel Finite Difference Method for Solving Nonlinear Static Beam Equations of Wind Turbine Blade Under Large Deflections

    Hang Meng1,*, Jiaxing Wu1, Guangxing Wu1, Kai Long1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09685

    Abstract Wind energy is one of the most promising renewable energies in the world. To generate more electricity, the wind turbines are getting larger and larger in recent decades [1]. With the wind turbine size growing, the length of the blade is getting slender. The large deflections of slender wind turbine blade will inevitably lead to geometric nonlinearities [2], e.g. nonlinear coupling between torsion and deflection, which complicates the governing equations of motion. To simplify the solution of the nonlinear equations, in the current research, a novel finite-difference method was proposed to solve the nonlinear equations… More >

  • Open Access

    ARTICLE

    Stiffness and Shear Stress Distribution of Glulam Beams in Elastic-Plastic Stage: Theory, Experiments and Numerical Modelling

    Lisheng Luo1,*, Xinran Xie1, Yongqiang Zhang1, Xiaofeng Zhang2, Xinyue Cui1

    Journal of Renewable Materials, Vol.11, No.2, pp. 791-809, 2023, DOI:10.32604/jrm.2022.022539 - 22 September 2022

    Abstract Traditional methods focus on the ultimate bending moment of glulam beams and the fracture failure of materials with defects, which usually depends on empirical parameters. There is no systematic theoretical method to predict the stiffness and shear distribution of glulam beams in elastic-plastic stage, and consequently, the failure of such glulam beams cannot be predicted effectively. To address these issues, an analytical method considering material nonlinearity was proposed for glulam beams, and the calculating equations of deflection and shear stress distribution for different failure modes were established. The proposed method was verified by experiments and More > Graphic Abstract

    Stiffness and Shear Stress Distribution of Glulam Beams in Elastic-Plastic Stage: Theory, Experiments and Numerical Modelling

  • Open Access

    ARTICLE

    Research on the Bending Impact Resistance and Transverse Fracture Characteristics of Bamboo under the Action of Falling Weight

    Hao Jia1,2, Benhua Fei1,2, Changhua Fang1,2, Huanrong Liu1,2, Xiubiao Zhang1,2, Xinxin Ma1,2, Fengbo Sun1,2,*

    Journal of Renewable Materials, Vol.11, No.1, pp. 473-490, 2023, DOI:10.32604/jrm.2022.023548 - 10 August 2022

    Abstract Drop weight impact tester was used to accurately measure the bending impact resistance of various parts of Phyllostachys edulis, commonly known as moso bamboo, with a growth cycle of 3–8 years. Cellulose crystallinity in the bottom (B), middle (M) and top (T) of bamboo at different ages was calculated using peak height analysis in X-ray diffraction. Heatmap of Spearman correlation analysis was used to represent the correlation between chemical composition and impact mechanics. The breaking load (BL), fracture energy (FE) and impact deflection (ID) of 3–8-yearold bamboo were found to be in the range of ~670–2120 N, ~5.17–15.55 J,… More > Graphic Abstract

    Research on the Bending Impact Resistance and Transverse Fracture Characteristics of Bamboo under the Action of Falling Weight

  • Open Access

    ARTICLE

    Identification of Internal Damage in Circular Cylinders through Laser Scanning of Vibrating Surfaces

    Yisu Xi1, Binkai Shi2, Wei Xu1,3,*, Jing Ge4, Huaxin Zhu5, Dragoslav Sumarac6,7

    Structural Durability & Health Monitoring, Vol.16, No.2, pp. 163-177, 2022, DOI:10.32604/sdhm.2022.022082 - 25 April 2022

    Abstract With the aid of non-contact measurements of vibrating surfaces through laser scanning, operating deflection shapes (ODSs) with high spatial resolutions can be used to graphically characterize damage in plane structures. Although numerous damage identification approaches relying on laser-measured ODSs have been developed for plate-type structures, they cannot be directly applied to circular cylinders due to the gap between equations of motions of plates and circular cylinders. To fill this gap, a novel approach is proposed in this study for damage identification of circular cylinders. Damage-induced discontinuities of the derivatives of ODSs can be used to More >

  • Open Access

    ARTICLE

    Analysis of Near-Wake Deflection Characteristics of Horizontal Axis Wind Turbine Tower under Yaw State

    Zhen Liu1,3, Jianwen Wang1,2,*, Fuzhong Bai3, Caifeng Wen1,2, Yunchao Du1

    Energy Engineering, Vol.118, No.6, pp. 1627-1640, 2021, DOI:10.32604/EE.2021.016357 - 10 September 2021

    Abstract The yaw of the horizontal axis wind turbine results in the deflection of the wake flow field of the tower. The reasonable layout of wind farm can reduce the power loss of the downstream wind turbine generators due to the blocking effect of the upstream wake flow and increase the output power of the whole wind farm. However, there is still much space for further research. In this paper, experimental research is conducted on the near-wake deflection characteristics of wind turbine tower under yaw state, expecting the effect of throwing away a brick in order… More >

  • Open Access

    ARTICLE

    Data Fusion about Serviceability Reliability Prediction for the Long-Span Bridge Girder Based on MBDLM and Gaussian Copula Technique

    Xueping Fan*, Guanghong Yang, Zhipeng Shang, Xiaoxiong Zhao, Yuefei Liu*

    Structural Durability & Health Monitoring, Vol.15, No.1, pp. 69-83, 2021, DOI:10.32604/sdhm.2021.011922 - 22 March 2021

    Abstract This article presented a new data fusion approach for reasonably predicting dynamic serviceability reliability of the long-span bridge girder. Firstly, multivariate Bayesian dynamic linear model (MBDLM) considering dynamic correlation among the multiple variables is provided to predict dynamic extreme deflections; secondly, with the proposed MBDLM, the dynamic correlation coefficients between any two performance functions can be predicted; finally, based on MBDLM and Gaussian copula technique, a new data fusion method is given to predict the serviceability reliability of the long-span bridge girder, and the monitoring extreme deflection data from an actual bridge is provided to More >

Displaying 1-10 on page 1 of 32. Per Page