Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    REVIEW

    A Comprehensive Overview and Comparative Analysis on Deep Learning Models

    Farhad Mortezapour Shiri*, Thinagaran Perumal, Norwati Mustapha, Raihani Mohamed

    Journal on Artificial Intelligence, Vol.6, pp. 301-360, 2024, DOI:10.32604/jai.2024.054314 - 20 November 2024

    Abstract Deep learning (DL) has emerged as a powerful subset of machine learning (ML) and artificial intelligence (AI), outperforming traditional ML methods, especially in handling unstructured and large datasets. Its impact spans across various domains, including speech recognition, healthcare, autonomous vehicles, cybersecurity, predictive analytics, and more. However, the complexity and dynamic nature of real-world problems present challenges in designing effective deep learning models. Consequently, several deep learning models have been developed to address different problems and applications. In this article, we conduct a comprehensive survey of various deep learning models, including Convolutional Neural Network (CNN), Recurrent… More >

  • Open Access

    ARTICLE

    Value Function Mechanism in WSNs-Based Mango Plantation Monitoring System

    Wen-Tsai Sung1, Indra Griha Tofik Isa1,2, Sung-Jung Hsiao3,*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 3733-3759, 2024, DOI:10.32604/cmc.2024.053634 - 12 September 2024

    Abstract Mango fruit is one of the main fruit commodities that contributes to Taiwan’s income. The implementation of technology is an alternative to increasing the quality and quantity of mango plantation product productivity. In this study, a Wireless Sensor Networks (“WSNs”)-based intelligent mango plantation monitoring system will be developed that implements deep reinforcement learning (DRL) technology in carrying out prediction tasks based on three classifications: “optimal,” “sub-optimal,” or “not-optimal” conditions based on three parameters including humidity, temperature, and soil moisture. The key idea is how to provide a precise decision-making mechanism in the real-time monitoring system.… More >

  • Open Access

    ARTICLE

    Optimization Scheme of Trusted Task Offloading in IIoT Scenario Based on DQN

    Xiaojuan Wang1, Zikui Lu1,*, Siyuan Sun2, Jingyue Wang1, Luona Song3, Merveille Nicolas4

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 2055-2071, 2023, DOI:10.32604/cmc.2023.031750 - 22 September 2022

    Abstract With the development of the Industrial Internet of Things (IIoT), end devices (EDs) are equipped with more functions to capture information. Therefore, a large amount of data is generated at the edge of the network and needs to be processed. However, no matter whether these computing tasks are offloaded to traditional central clusters or mobile edge computing (MEC) devices, the data is short of security and may be changed during transmission. In view of this challenge, this paper proposes a trusted task offloading optimization scheme that can offer low latency and high bandwidth services for… More >

Displaying 1-10 on page 1 of 3. Per Page