Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (54)
  • Open Access

    ARTICLE

    Enhanced Deep Reinforcement Learning Strategy for Energy Management in Plug-in Hybrid Electric Vehicles with Entropy Regularization and Prioritized Experience Replay

    Li Wang1,*, Xiaoyong Wang2

    Energy Engineering, Vol.121, No.12, pp. 3953-3979, 2024, DOI:10.32604/ee.2024.056705 - 22 November 2024

    Abstract Plug-in Hybrid Electric Vehicles (PHEVs) represent an innovative breed of transportation, harnessing diverse power sources for enhanced performance. Energy management strategies (EMSs) that coordinate and control different energy sources is a critical component of PHEV control technology, directly impacting overall vehicle performance. This study proposes an improved deep reinforcement learning (DRL)-based EMS that optimizes real-time energy allocation and coordinates the operation of multiple power sources. Conventional DRL algorithms struggle to effectively explore all possible state-action combinations within high-dimensional state and action spaces. They often fail to strike an optimal balance between exploration and exploitation, and… More >

  • Open Access

    REVIEW

    A Comprehensive Overview and Comparative Analysis on Deep Learning Models

    Farhad Mortezapour Shiri*, Thinagaran Perumal, Norwati Mustapha, Raihani Mohamed

    Journal on Artificial Intelligence, Vol.6, pp. 301-360, 2024, DOI:10.32604/jai.2024.054314 - 20 November 2024

    Abstract Deep learning (DL) has emerged as a powerful subset of machine learning (ML) and artificial intelligence (AI), outperforming traditional ML methods, especially in handling unstructured and large datasets. Its impact spans across various domains, including speech recognition, healthcare, autonomous vehicles, cybersecurity, predictive analytics, and more. However, the complexity and dynamic nature of real-world problems present challenges in designing effective deep learning models. Consequently, several deep learning models have been developed to address different problems and applications. In this article, we conduct a comprehensive survey of various deep learning models, including Convolutional Neural Network (CNN), Recurrent… More >

  • Open Access

    ARTICLE

    Graph Attention Residual Network Based Routing and Fault-Tolerant Scheduling Mechanism for Data Flow in Power Communication Network

    Zhihong Lin1, Zeng Zeng2, Yituan Yu2, Yinlin Ren1, Xuesong Qiu1,*, Jinqian Chen1

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1641-1665, 2024, DOI:10.32604/cmc.2024.055802 - 15 October 2024

    Abstract For permanent faults (PF) in the power communication network (PCN), such as link interruptions, the time-sensitive networking (TSN) relied on by PCN, typically employs spatial redundancy fault-tolerance methods to keep service stability and reliability, which often limits TSN scheduling performance in fault-free ideal states. So this paper proposes a graph attention residual network-based routing and fault-tolerant scheduling mechanism (GRFS) for data flow in PCN, which specifically includes a communication system architecture for integrated terminals based on a cyclic queuing and forwarding (CQF) model and fault recovery method, which reduces the impact of faults by simplified… More >

  • Open Access

    ARTICLE

    A Task Offloading Strategy Based on Multi-Agent Deep Reinforcement Learning for Offshore Wind Farm Scenarios

    Zeshuang Song1, Xiao Wang1,*, Qing Wu1, Yanting Tao1, Linghua Xu1, Yaohua Yin2, Jianguo Yan3

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 985-1008, 2024, DOI:10.32604/cmc.2024.055614 - 15 October 2024

    Abstract This research is the first application of Unmanned Aerial Vehicles (UAVs) equipped with Multi-access Edge Computing (MEC) servers to offshore wind farms, providing a new task offloading solution to address the challenge of scarce edge servers in offshore wind farms. The proposed strategy is to offload the computational tasks in this scenario to other MEC servers and compute them proportionally, which effectively reduces the computational pressure on local MEC servers when wind turbine data are abnormal. Finally, the task offloading problem is modeled as a multi-intelligent deep reinforcement learning problem, and a task offloading model… More >

  • Open Access

    ARTICLE

    Task Offloading and Trajectory Optimization in UAV Networks: A Deep Reinforcement Learning Method Based on SAC and A-Star

    Jianhua Liu*, Peng Xie, Jiajia Liu, Xiaoguang Tu

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1243-1273, 2024, DOI:10.32604/cmes.2024.054002 - 27 September 2024

    Abstract In mobile edge computing, unmanned aerial vehicles (UAVs) equipped with computing servers have emerged as a promising solution due to their exceptional attributes of high mobility, flexibility, rapid deployment, and terrain agnosticism. These attributes enable UAVs to reach designated areas, thereby addressing temporary computing swiftly in scenarios where ground-based servers are overloaded or unavailable. However, the inherent broadcast nature of line-of-sight transmission methods employed by UAVs renders them vulnerable to eavesdropping attacks. Meanwhile, there are often obstacles that affect flight safety in real UAV operation areas, and collisions between UAVs may also occur. To solve… More >

  • Open Access

    ARTICLE

    Service Function Chain Deployment Algorithm Based on Multi-Agent Deep Reinforcement Learning

    Wanwei Huang1,*, Qiancheng Zhang1, Tao Liu2, Yaoli Xu1, Dalei Zhang3

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4875-4893, 2024, DOI:10.32604/cmc.2024.055622 - 12 September 2024

    Abstract Aiming at the rapid growth of network services, which leads to the problems of long service request processing time and high deployment cost in the deployment of network function virtualization service function chain (SFC) under 5G networks, this paper proposes a multi-agent deep deterministic policy gradient optimization algorithm for SFC deployment (MADDPG-SD). Initially, an optimization model is devised to enhance the request acceptance rate, minimizing the latency and deploying the cost SFC is constructed for the network resource-constrained case. Subsequently, we model the dynamic problem as a Markov decision process (MDP), facilitating adaptation to the… More >

  • Open Access

    ARTICLE

    Enhanced UAV Pursuit-Evasion Using Boids Modelling: A Synergistic Integration of Bird Swarm Intelligence and DRL

    Weiqiang Jin1,#, Xingwu Tian1,#, Bohang Shi1, Biao Zhao1,*, Haibin Duan2, Hao Wu3

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 3523-3553, 2024, DOI:10.32604/cmc.2024.055125 - 12 September 2024

    Abstract The UAV pursuit-evasion problem focuses on the efficient tracking and capture of evading targets using unmanned aerial vehicles (UAVs), which is pivotal in public safety applications, particularly in scenarios involving intrusion monitoring and interception. To address the challenges of data acquisition, real-world deployment, and the limited intelligence of existing algorithms in UAV pursuit-evasion tasks, we propose an innovative swarm intelligence-based UAV pursuit-evasion control framework, namely “Boids Model-based DRL Approach for Pursuit and Escape” (Boids-PE), which synergizes the strengths of swarm intelligence from bio-inspired algorithms and deep reinforcement learning (DRL). The Boids model, which simulates collective… More >

  • Open Access

    ARTICLE

    Value Function Mechanism in WSNs-Based Mango Plantation Monitoring System

    Wen-Tsai Sung1, Indra Griha Tofik Isa1,2, Sung-Jung Hsiao3,*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 3733-3759, 2024, DOI:10.32604/cmc.2024.053634 - 12 September 2024

    Abstract Mango fruit is one of the main fruit commodities that contributes to Taiwan’s income. The implementation of technology is an alternative to increasing the quality and quantity of mango plantation product productivity. In this study, a Wireless Sensor Networks (“WSNs”)-based intelligent mango plantation monitoring system will be developed that implements deep reinforcement learning (DRL) technology in carrying out prediction tasks based on three classifications: “optimal,” “sub-optimal,” or “not-optimal” conditions based on three parameters including humidity, temperature, and soil moisture. The key idea is how to provide a precise decision-making mechanism in the real-time monitoring system.… More >

  • Open Access

    ARTICLE

    Distributed Resource Allocation in Dispersed Computing Environment Based on UAV Track Inspection in Urban Rail Transit

    Tong Gan1, Shuo Dong1, Shiyou Wang1, Jiaxin Li2,*

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 643-660, 2024, DOI:10.32604/cmc.2024.051408 - 18 July 2024

    Abstract With the rapid development of urban rail transit, the existing track detection has some problems such as low efficiency and insufficient detection coverage, so an intelligent and automatic track detection method based on UAV is urgently needed to avoid major safety accidents. At the same time, the geographical distribution of IoT devices results in the inefficient use of the significant computing potential held by a large number of devices. As a result, the Dispersed Computing (DCOMP) architecture enables collaborative computing between devices in the Internet of Everything (IoE), promotes low-latency and efficient cross-wide applications, and… More >

  • Open Access

    ARTICLE

    MADDPG-D2: An Intelligent Dynamic Task Allocation Algorithm Based on Multi-Agent Architecture Driven by Prior Knowledge

    Tengda Li, Gang Wang, Qiang Fu*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2559-2586, 2024, DOI:10.32604/cmes.2024.052039 - 08 July 2024

    Abstract Aiming at the problems of low solution accuracy and high decision pressure when facing large-scale dynamic task allocation (DTA) and high-dimensional decision space with single agent, this paper combines the deep reinforcement learning (DRL) theory and an improved Multi-Agent Deep Deterministic Policy Gradient (MADDPG-D2) algorithm with a dual experience replay pool and a dual noise based on multi-agent architecture is proposed to improve the efficiency of DTA. The algorithm is based on the traditional Multi-Agent Deep Deterministic Policy Gradient (MADDPG) algorithm, and considers the introduction of a double noise mechanism to increase the action exploration… More >

Displaying 1-10 on page 1 of 54. Per Page