Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (6)
  • Open Access

    ARTICLE

    A Hybrid Approach to Software Testing Efficiency: Stacked Ensembles and Deep Q-Learning for Test Case Prioritization and Ranking

    Anis Zarrad1, Thomas Armstrong2, Jaber Jemai3,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072768 - 12 January 2026

    Abstract Test case prioritization and ranking play a crucial role in software testing by improving fault detection efficiency and ensuring software reliability. While prioritization selects the most relevant test cases for optimal coverage, ranking further refines their execution order to detect critical faults earlier. This study investigates machine learning techniques to enhance both prioritization and ranking, contributing to more effective and efficient testing processes. We first employ advanced feature engineering alongside ensemble models, including Gradient Boosted, Support Vector Machines, Random Forests, and Naive Bayes classifiers to optimize test case prioritization, achieving an accuracy score of 0.98847More >

  • Open Access

    ARTICLE

    FAIR-DQL: Fairness-Aware Deep Q-Learning for Enhanced Resource Allocation and RIS Optimization in High-Altitude Platform Networks

    Muhammad Ejaz1, Muhammad Asim2,*, Mudasir Ahmad Wani2,3, Kashish Ara Shakil4,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072464 - 12 January 2026

    Abstract The integration of High-Altitude Platform Stations (HAPS) with Reconfigurable Intelligent Surfaces (RIS) represents a critical advancement for next-generation wireless networks, offering unprecedented opportunities for ubiquitous connectivity. However, existing research reveals significant gaps in dynamic resource allocation, joint optimization, and equitable service provisioning under varying channel conditions, limiting practical deployment of these technologies. This paper addresses these challenges by proposing a novel Fairness-Aware Deep Q-Learning (FAIR-DQL) framework for joint resource management and phase configuration in HAPS-RIS systems. Our methodology employs a comprehensive three-tier algorithmic architecture integrating adaptive power control, priority-based user scheduling, and dynamic learning mechanisms. More >

  • Open Access

    ARTICLE

    Deep Q-Learning Driven Protocol for Enhanced Border Surveillance with Extended Wireless Sensor Network Lifespan

    Nimisha Rajput1,#, Amit Kumar1, Raghavendra Pal1,#, Nishu Gupta2,*, Mikko Uitto2, Jukka Mäkelä2

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 3839-3859, 2025, DOI:10.32604/cmes.2025.065903 - 30 June 2025

    Abstract Wireless Sensor Networks (WSNs) play a critical role in automated border surveillance systems, where continuous monitoring is essential. However, limited energy resources in sensor nodes lead to frequent network failures and reduced coverage over time. To address this issue, this paper presents an innovative energy-efficient protocol based on deep Q-learning (DQN), specifically developed to prolong the operational lifespan of WSNs used in border surveillance. By harnessing the adaptive power of DQN, the proposed protocol dynamically adjusts node activity and communication patterns. This approach ensures optimal energy usage while maintaining high coverage, connectivity, and data accuracy. More >

  • Open Access

    ARTICLE

    Effective Controller Placement in Software-Defined Internet-of-Things Leveraging Deep Q-Learning (DQL)

    Jehad Ali1,*, Mohammed J. F. Alenazi2

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 4015-4032, 2024, DOI:10.32604/cmc.2024.058480 - 19 December 2024

    Abstract The controller is a main component in the Software-Defined Networking (SDN) framework, which plays a significant role in enabling programmability and orchestration for 5G and next-generation networks. In SDN, frequent communication occurs between network switches and the controller, which manages and directs traffic flows. If the controller is not strategically placed within the network, this communication can experience increased delays, negatively affecting network performance. Specifically, an improperly placed controller can lead to higher end-to-end (E2E) delay, as switches must traverse more hops or encounter greater propagation delays when communicating with the controller. This paper introduces… More >

  • Open Access

    ARTICLE

    Deep Q-Learning Based Optimal Query Routing Approach for Unstructured P2P Network

    Mohammad Shoab, Abdullah Shawan Alotaibi*

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 5765-5781, 2022, DOI:10.32604/cmc.2022.021941 - 11 October 2021

    Abstract Deep Reinforcement Learning (DRL) is a class of Machine Learning (ML) that combines Deep Learning with Reinforcement Learning and provides a framework by which a system can learn from its previous actions in an environment to select its efforts in the future efficiently. DRL has been used in many application fields, including games, robots, networks, etc. for creating autonomous systems that improve themselves with experience. It is well acknowledged that DRL is well suited to solve optimization problems in distributed systems in general and network routing especially. Therefore, a novel query routing approach called Deep More >

  • Open Access

    ARTICLE

    Deep Q-Learning Based Computation Offloading Strategy for Mobile Edge Computing

    Yifei Wei1,*, Zhaoying Wang1, Da Guo1, F. Richard Yu2

    CMC-Computers, Materials & Continua, Vol.59, No.1, pp. 89-104, 2019, DOI:10.32604/cmc.2019.04836

    Abstract To reduce the transmission latency and mitigate the backhaul burden of the centralized cloud-based network services, the mobile edge computing (MEC) has been drawing increased attention from both industry and academia recently. This paper focuses on mobile users’ computation offloading problem in wireless cellular networks with mobile edge computing for the purpose of optimizing the computation offloading decision making policy. Since wireless network states and computing requests have stochastic properties and the environment’s dynamics are unknown, we use the model-free reinforcement learning (RL) framework to formulate and tackle the computation offloading problem. Each mobile user… More >

Displaying 1-10 on page 1 of 6. Per Page