Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (13)
  • Open Access

    REVIEW

    Deep Learning in Medical Image Analysis: A Comprehensive Review of Algorithms, Trends, Applications, and Challenges

    Dawa Chyophel Lepcha1,*, Bhawna Goyal2,3, Ayush Dogra4, Ahmed Alkhayyat5, Prabhat Kumar Sahu6, Aaliya Ali7, Vinay Kukreja4

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1487-1573, 2025, DOI:10.32604/cmes.2025.070964 - 26 November 2025

    Abstract Medical image analysis has become a cornerstone of modern healthcare, driven by the exponential growth of data from imaging modalities such as MRI, CT, PET, ultrasound, and X-ray. Traditional machine learning methods have made early contributions; however, recent advancements in deep learning (DL) have revolutionized the field, offering state-of-the-art performance in image classification, segmentation, detection, fusion, registration, and enhancement. This comprehensive review presents an in-depth analysis of deep learning methodologies applied across medical image analysis tasks, highlighting both foundational models and recent innovations. The article begins by introducing conventional techniques and their limitations, setting the… More >

  • Open Access

    ARTICLE

    Deep Learning Models for Detecting Cheating in Online Exams

    Siham Essahraui1, Ismail Lamaakal1, Yassine Maleh2,*, Khalid El Makkaoui1, Mouncef Filali Bouami1, Ibrahim Ouahbi1, May Almousa3, Ali Abdullah S. AlQahtani4, Ahmed A. Abd El-Latif5,6

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 3151-3183, 2025, DOI:10.32604/cmc.2025.067359 - 23 September 2025

    Abstract The rapid shift to online education has introduced significant challenges to maintaining academic integrity in remote assessments, as traditional proctoring methods fall short in preventing cheating. The increase in cheating during online exams highlights the need for efficient, adaptable detection models to uphold academic credibility. This paper presents a comprehensive analysis of various deep learning models for cheating detection in online proctoring systems, evaluating their accuracy, efficiency, and adaptability. We benchmark several advanced architectures, including EfficientNet, MobileNetV2, ResNet variants and more, using two specialized datasets (OEP and OP) tailored for online proctoring contexts. Our findings More >

  • Open Access

    REVIEW

    Survey on AI-Enabled Resource Management for 6G Heterogeneous Networks: Recent Research, Challenges, and Future Trends

    Hayder Faeq Alhashimi1, Mhd Nour Hindia1, Kaharudin Dimyati1,*, Effariza Binti Hanafi1, Feras Zen Alden2, Faizan Qamar3, Quang Ngoc Nguyen4,5,*

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 3585-3622, 2025, DOI:10.32604/cmc.2025.062867 - 19 May 2025

    Abstract The forthcoming 6G wireless networks have great potential for establishing AI-based networks that can enhance end-to-end connection and manage massive data of real-time networks. Artificial Intelligence (AI) advancements have contributed to the development of several innovative technologies by providing sophisticated specific AI mathematical models such as machine learning models, deep learning models, and hybrid models. Furthermore, intelligent resource management allows for self-configuration and autonomous decision-making capabilities of AI methods, which in turn improves the performance of 6G networks. Hence, 6G networks rely substantially on AI methods to manage resources. This paper comprehensively surveys the recent… More >

  • Open Access

    ARTICLE

    An Enhanced Task Migration Technique Based on Convolutional Neural Network in Machine Learning Framework

    Hamayun Khan1,*, Muhammad Atif Imtiaz2, Hira Siddique3, Muhammad Tausif Afzal Rana4, Arshad Ali5, Muhammad Zeeshan Baig6, Saif ur Rehman7, Yazed Alsaawy5

    Computer Systems Science and Engineering, Vol.49, pp. 317-331, 2025, DOI:10.32604/csse.2025.061118 - 19 March 2025

    Abstract The migration of tasks aided by machine learning (ML) predictions IN (DPM) is a system-level design technique that is used to reduce energy by enhancing the overall performance of the processor. In this paper, we address the issue of system-level higher task dissipation during the execution of parallel workloads with common deadlines by introducing a machine learning-based framework that includes task migration using energy-efficient earliest deadline first scheduling (EA-EDF). ML-based EA-EDF enhances the overall throughput and optimizes the energy to avoid delay and performance degradation in a multiprocessor system. The proposed system model allocates processors… More >

  • Open Access

    ARTICLE

    Enhancing User Experience in AI-Powered Human-Computer Communication with Vocal Emotions Identification Using a Novel Deep Learning Method

    Ahmed Alhussen1, Arshiya Sajid Ansari2,*, Mohammad Sajid Mohammadi3

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2909-2929, 2025, DOI:10.32604/cmc.2024.059382 - 17 February 2025

    Abstract Voice, motion, and mimicry are naturalistic control modalities that have replaced text or display-driven control in human-computer communication (HCC). Specifically, the vocals contain a lot of knowledge, revealing details about the speaker’s goals and desires, as well as their internal condition. Certain vocal characteristics reveal the speaker’s mood, intention, and motivation, while word study assists the speaker’s demand to be understood. Voice emotion recognition has become an essential component of modern HCC networks. Integrating findings from the various disciplines involved in identifying vocal emotions is also challenging. Many sound analysis techniques were developed in the… More >

  • Open Access

    ARTICLE

    Fake News Detection on Social Media Using Ensemble Methods

    Muhammad Ali Ilyas1, Abdul Rehman2, Assad Abbas1, Dongsun Kim3,*, Muhammad Tahir Naseem4,*, Nasro Min Allah5

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 4525-4549, 2024, DOI:10.32604/cmc.2024.056291 - 19 December 2024

    Abstract In an era dominated by information dissemination through various channels like newspapers, social media, radio, and television, the surge in content production, especially on social platforms, has amplified the challenge of distinguishing between truthful and deceptive information. Fake news, a prevalent issue, particularly on social media, complicates the assessment of news credibility. The pervasive spread of fake news not only misleads the public but also erodes trust in legitimate news sources, creating confusion and polarizing opinions. As the volume of information grows, individuals increasingly struggle to discern credible content from false narratives, leading to widespread… More >

  • Open Access

    ARTICLE

    Deep Learning ResNet101 Deep Features of Portable Chest X-Ray Accurately Classify COVID-19 Lung Infection

    Sobia Nawaz1, Sidra Rasheed2, Wania Sami3, Lal Hussain4,5,*, Amjad Aldweesh6,*, Elsayed Tag eldin7, Umair Ahmad Salaria8,9, Mohammad Shahbaz Khan10

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5213-5228, 2023, DOI:10.32604/cmc.2023.037543 - 29 April 2023

    Abstract This study is designed to develop Artificial Intelligence (AI) based analysis tool that could accurately detect COVID-19 lung infections based on portable chest x-rays (CXRs). The frontline physicians and radiologists suffer from grand challenges for COVID-19 pandemic due to the suboptimal image quality and the large volume of CXRs. In this study, AI-based analysis tools were developed that can precisely classify COVID-19 lung infection. Publicly available datasets of COVID-19 (N = 1525), non-COVID-19 normal (N = 1525), viral pneumonia (N = 1342) and bacterial pneumonia (N = 2521) from the Italian Society of Medical and… More >

  • Open Access

    ARTICLE

    Early Skin Disease Identification Using eep Neural Network

    Vinay Gautam1, Naresh Kumar Trivedi1, Abhineet Anand1, Rajeev Tiwari2,*, Atef Zaguia3, Deepika Koundal4, Sachin Jain5

    Computer Systems Science and Engineering, Vol.44, No.3, pp. 2259-2275, 2023, DOI:10.32604/csse.2023.026358 - 01 August 2022

    Abstract Skin lesions detection and classification is a prominent issue and difficult even for extremely skilled dermatologists and pathologists. Skin disease is the most common disorder triggered by fungus, viruses, bacteria, allergies, etc. Skin diseases are most dangerous and may be the cause of serious damage. Therefore, it requires to diagnose it at an earlier stage, but the diagnosis therapy itself is complex and needs advanced laser and photonic therapy. This advance therapy involves financial burden and some other ill effects. Therefore, it must use artificial intelligence techniques to detect and diagnose it accurately at an… More >

  • Open Access

    ARTICLE

    Hybrid Convolutional Neural Network and Long Short-Term Memory Approach for Facial Expression Recognition

    M. N. Kavitha1,*, A. RajivKannan2

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 689-704, 2023, DOI:10.32604/iasc.2023.025437 - 06 June 2022

    Abstract Facial Expression Recognition (FER) has been an important field of research for several decades. Extraction of emotional characteristics is crucial to FERs, but is complex to process as they have significant intra-class variances. Facial characteristics have not been completely explored in static pictures. Previous studies used Convolution Neural Networks (CNNs) based on transfer learning and hyperparameter optimizations for static facial emotional recognitions. Particle Swarm Optimizations (PSOs) have also been used for tuning hyperparameters. However, these methods achieve about 92 percent in terms of accuracy. The existing algorithms have issues with FER accuracy and precision. Hence,… More >

  • Open Access

    ARTICLE

    A Deep Learning-Based Continuous Blood Pressure Measurement by Dual Photoplethysmography Signals

    Chih-Ta Yen1,*, Sheng-Nan Chang2, Liao Jia-Xian3, Yi-Kai Huang3

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 2937-2952, 2022, DOI:10.32604/cmc.2022.020493 - 27 September 2021

    Abstract This study proposed a measurement platform for continuous blood pressure estimation based on dual photoplethysmography (PPG) sensors and a deep learning (DL) that can be used for continuous and rapid measurement of blood pressure and analysis of cardiovascular-related indicators. The proposed platform measured the signal changes in PPG and converted them into physiological indicators, such as pulse transit time (PTT), pulse wave velocity (PWV), perfusion index (PI) and heart rate (HR); these indicators were then fed into the DL to calculate blood pressure. The hardware of the experiment comprised 2 PPG components (i.e., Raspberry Pi 3… More >

Displaying 1-10 on page 1 of 13. Per Page