Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (10)
  • Open Access

    ARTICLE

    IoMT-Based Smart Healthcare of Elderly People Using Deep Extreme Learning Machine

    Muath Jarrah1, Hussam Al Hamadi4,*, Ahmed Abu-Khadrah2, Taher M. Ghazal1,3

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 19-33, 2023, DOI:10.32604/cmc.2023.032775 - 08 June 2023

    Abstract The Internet of Medical Things (IoMT) enables digital devices to gather, infer, and broadcast health data via the cloud platform. The phenomenal growth of the IoMT is fueled by many factors, including the widespread and growing availability of wearables and the ever-decreasing cost of sensor-based technology. There is a growing interest in providing solutions for elderly people living assistance in a world where the population is rising rapidly. The IoMT is a novel reality transforming our daily lives. It can renovate modern healthcare by delivering a more personalized, protective, and collaborative approach to care. However, More >

  • Open Access

    ARTICLE

    Project Assessment in Offshore Software Maintenance Outsourcing Using Deep Extreme Learning Machines

    Atif Ikram1,2,*, Masita Abdul Jalil1, Amir Bin Ngah1, Saqib Raza6, Ahmad Salman Khan3, Yasir Mahmood3,4, Nazri Kama4, Azri Azmi4, Assad Alzayed5

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 1871-1886, 2023, DOI:10.32604/cmc.2023.030818 - 22 September 2022

    Abstract Software maintenance is the process of fixing, modifying, and improving software deliverables after they are delivered to the client. Clients can benefit from offshore software maintenance outsourcing (OSMO) in different ways, including time savings, cost savings, and improving the software quality and value. One of the hardest challenges for the OSMO vendor is to choose a suitable project among several clients’ projects. The goal of the current study is to recommend a machine learning-based decision support system that OSMO vendors can utilize to forecast or assess the project of OSMO clients. The projects belong to… More >

  • Open Access

    ARTICLE

    Data Fusion-Based Machine Learning Architecture for Intrusion Detection

    Muhammad Adnan Khan, Taher M. Ghazal2,3, Sang-Woong Lee1,*, Abdur Rehman4

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 3399-3413, 2022, DOI:10.32604/cmc.2022.020173 - 27 September 2021

    Abstract In recent years, the infrastructure of Wireless Internet of Sensor Networks (WIoSNs) has been more complicated owing to developments in the internet and devices’ connectivity. To effectively prepare, control, hold and optimize wireless sensor networks, a better assessment needs to be conducted. The field of artificial intelligence has made a great deal of progress with deep learning systems and these techniques have been used for data analysis. This study investigates the methodology of Real Time Sequential Deep Extreme Learning Machine (RTS-DELM) implemented to wireless Internet of Things (IoT) enabled sensor networks for the detection of… More >

  • Open Access

    ARTICLE

    Energy Demand Forecasting Using Fused Machine Learning Approaches

    Taher M. Ghazal1,2, Sajida Noreen3, Raed A. Said4, Muhammad Adnan Khan5,*, Shahan Yamin Siddiqui3,6, Sagheer Abbas3, Shabib Aftab3, Munir Ahmad3

    Intelligent Automation & Soft Computing, Vol.31, No.1, pp. 539-553, 2022, DOI:10.32604/iasc.2022.019658 - 03 September 2021

    Abstract The usage of IoT-based smart meter in electric power consumption shows a significant role in helping the users to manage and control their electric power consumption. It produces smooth communication to build equitable electric power distribution for users and improved management of the entire electric system for providers. Machine learning predicting algorithms have been worked to apply the electric efficiency and response of progressive energy creation, transmission, and consumption. In the proposed model, an IoT-based smart meter uses a support vector machine and deep extreme machine learning techniques for professional energy management. A deep extreme More >

  • Open Access

    ARTICLE

    Detection of COVID-19 Enhanced by a Deep Extreme Learning Machine

    Aaqib Inam1,*, Zhuli1, Ayesha Sarwar1, Salah-ud-din2, Ayesha Atta3, Iftikhar Naaseer4, Shahan Yamin Siddiqui5,6, Muhammad Adnan Khan7

    Intelligent Automation & Soft Computing, Vol.27, No.3, pp. 701-712, 2021, DOI:10.32604/iasc.2021.014235 - 01 March 2021

    Abstract The outbreak of coronavirus disease 2019 (COVID-19) has had a tremendous effect on daily life and a great impact on the economy of the world. More than 200 countries have been affected. The diagnosis of coronavirus is a major challenge for medical experts. Early detection is one of the most effective ways to reduce the mortality rate and increase the chance of successful treatment. At this point in time, no antiviral drugs have been approved for use, and clinically approved vaccines have only recently become available in some countries. Hybrid artificial intelligence computer-aided systems for… More >

  • Open Access

    ARTICLE

    Intelligent Software-Defined Network for Cognitive Routing Optimization Using Deep Extreme Learning Machine Approach

    Fahd Alhaidari1, Sultan H. Almotiri2, Mohammed A.Al Ghamdi2, Muhammad Adnan Khan3,*, Abdur Rehman4, Sagheer Abbas4, Khalid Masood Khan3, Atta-ur-Rahman5

    CMC-Computers, Materials & Continua, Vol.67, No.1, pp. 1269-1285, 2021, DOI:10.32604/cmc.2021.013303 - 12 January 2021

    Abstract In recent years, the infrastructure, instruments, and resources of network systems are becoming more complex and heterogeneous, with the rapid development of current internet and mobile communication technologies. In order to efficaciously prepare, control, hold and optimize networking systems, greater intelligence needs to be deployed. However, due to the inherently dispensed characteristic of conventional networks, Machine Learning (ML) techniques are hard to implement and deployed to govern and operate networks. Software-Defined Networking (SDN) brings us new possibilities to offer intelligence in the networks. SDN’s characteristics (e.g., logically centralized control, global network view, software-based site visitor… More >

  • Open Access

    ARTICLE

    A Real-Time Sequential Deep Extreme Learning Machine Cybersecurity Intrusion Detection System

    Amir Haider1, Muhammad Adnan Khan2, Abdur Rehman3, Muhib Ur Rahman4, Hyung Seok Kim1,*

    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1785-1798, 2021, DOI:10.32604/cmc.2020.013910 - 26 November 2020

    Abstract In recent years, cybersecurity has attracted significant interest due to the rapid growth of the Internet of Things (IoT) and the widespread development of computer infrastructure and systems. It is thus becoming particularly necessary to identify cyber-attacks or irregularities in the system and develop an efficient intrusion detection framework that is integral to security. Researchers have worked on developing intrusion detection models that depend on machine learning (ML) methods to address these security problems. An intelligent intrusion detection device powered by data can exploit artificial intelligence (AI), and especially ML, techniques. Accordingly, we propose in More >

  • Open Access

    ARTICLE

    Enhance Intrusion Detection in Computer Networks Based on Deep Extreme Learning Machine

    Muhammad Adnan Khan1,*, Abdur Rehman2, Khalid Masood Khan1, Mohammed A. Al Ghamdi3, Sultan H. Almotiri3

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 467-480, 2021, DOI:10.32604/cmc.2020.013121 - 30 October 2020

    Abstract Networks provide a significant function in everyday life, and cybersecurity therefore developed a critical field of study. The Intrusion detection system (IDS) becoming an essential information protection strategy that tracks the situation of the software and hardware operating on the network. Notwithstanding advancements of growth, current intrusion detection systems also experience dif- ficulties in enhancing detection precision, growing false alarm levels and identifying suspicious activities. In order to address above mentioned issues, several researchers concentrated on designing intrusion detection systems that rely on machine learning approaches. Machine learning models will accurately identify the underlying variations… More >

  • Open Access

    ARTICLE

    Enabling Smart Cities with Cognition Based Intelligent Route Decision in Vehicles Empowered with Deep Extreme Learning Machine

    Dildar Hussain1, Muhammad Adnan Khan2,*, Sagheer Abbas3, Rizwan Ali Naqvi4, Muhammad Faheem Mushtaq5, Abdur Rehman3, Afrozah Nadeem2

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 141-156, 2021, DOI:10.32604/cmc.2020.013458 - 30 October 2020

    Abstract The fast-paced growth of artificial intelligence provides unparalleled opportunities to improve the efficiency of various industries, including the transportation sector. The worldwide transport departments face many obstacles following the implementation and integration of different vehicle features. One of these tasks is to ensure that vehicles are autonomous, intelligent and able to grow their repository of information. Machine learning has recently been implemented in wireless networks, as a major artificial intelligence branch, to solve historically challenging problems through a data-driven approach. In this article, we discuss recent progress of applying machine learning into vehicle networks for… More >

  • Open Access

    ARTICLE

    Intelligent Forecasting Model of COVID-19 Novel Coronavirus Outbreak Empowered with Deep Extreme Learning Machine

    Muhammad Adnan Khan1, *, Sagheer Abbas2, Khalid Masood Khan1, Mohammad A. Al Ghamdi3, Abdur Rehman2

    CMC-Computers, Materials & Continua, Vol.64, No.3, pp. 1329-1342, 2020, DOI:10.32604/cmc.2020.011155 - 30 June 2020

    Abstract An epidemic is a quick and widespread disease that threatens many lives and damages the economy. The epidemic lifetime should be accurate so that timely and remedial steps are determined. These include the closing of borders schools, suspension of community and commuting services. The forecast of an outbreak effectively is a very necessary but difficult task. A predictive model that provides the best possible forecast is a great challenge for machine learning with only a few samples of training available. This work proposes and examines a prediction model based on a deep extreme learning machine… More >

Displaying 1-10 on page 1 of 10. Per Page