Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Deep Learning-Based Algorithm for Multi-Type Defects Detection in Solar Cells with Aerial EL Images for Photovoltaic Plants

    Wuqin Tang, Qiang Yang, Wenjun Yan*

    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.3, pp. 1423-1439, 2022, DOI:10.32604/cmes.2022.018313 - 30 December 2021

    Abstract Defects detection with Electroluminescence (EL) image for photovoltaic (PV) module has become a standard test procedure during the process of production, installation, and operation of solar modules. There are some typical defects types, such as crack, finger interruption, that can be recognized with high accuracy. However, due to the complexity of EL images and the limitation of the dataset, it is hard to label all types of defects during the inspection process. The unknown or unlabeled create significant difficulties in the practical application of the automatic defects detection technique. To address the problem, we proposed… More >

  • Open Access

    ARTICLE

    Improved Dragonfly Optimizer for Intrusion Detection Using Deep Clustering CNN-PSO Classifier

    K. S. Bhuvaneshwari1, K. Venkatachalam2, S. Hubálovský3,*, P. Trojovský4, P. Prabu5

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 5949-5965, 2022, DOI:10.32604/cmc.2022.020769 - 11 October 2021

    Abstract With the rapid growth of internet based services and the data generated on these services are attracted by the attackers to intrude the networking services and information. Based on the characteristics of these intruders, many researchers attempted to aim to detect the intrusion with the help of automating process. Since, the large volume of data is generated and transferred through network, the security and performance are remained an issue. IDS (Intrusion Detection System) was developed to detect and prevent the intruders and secure the network systems. The performance and loss are still an issue because… More >

  • Open Access

    ARTICLE

    Binaural Speech Separation Algorithm Based on Deep Clustering

    Lin Zhou1,*, Kun Feng1, Tianyi Wang1, Yue Xu1, Jingang Shi2

    Intelligent Automation & Soft Computing, Vol.30, No.2, pp. 527-537, 2021, DOI:10.32604/iasc.2021.018414 - 11 August 2021

    Abstract Neutral network (NN) and clustering are the two commonly used methods for speech separation based on supervised learning. Recently, deep clustering methods have shown promising performance. In our study, considering that the spectrum of the sound source has time correlation, and the spatial position of the sound source has short-term stability, we combine the spectral and spatial features for deep clustering. In this work, the logarithmic amplitude spectrum (LPS) and the interaural phase difference (IPD) function of each time frequency (TF) unit for the binaural speech signal are extracted as feature. Then, these features of… More >

Displaying 1-10 on page 1 of 3. Per Page