Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (37)
  • Open Access

    ARTICLE

    Sports Events Recognition Using Multi Features and Deep Belief Network

    Bayan Alabdullah1, Muhammad Tayyab2, Yahay AlQahtani3, Naif Al Mudawi4, Asaad Algarni5, Ahmad Jalal2, Jeongmin Park6,*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 309-326, 2024, DOI:10.32604/cmc.2024.053538 - 15 October 2024

    Abstract In the modern era of a growing population, it is arduous for humans to monitor every aspect of sports, events occurring around us, and scenarios or conditions. This recognition of different types of sports and events has increasingly incorporated the use of machine learning and artificial intelligence. This research focuses on detecting and recognizing events in sequential photos characterized by several factors, including the size, location, and position of people’s body parts in those pictures, and the influence around those people. Common approaches utilized, here are feature descriptors such as MSER (Maximally Stable Extremal Regions),… More >

  • Open Access

    RETRACTION

    Retraction: Deep Belief Network for Lung Nodule Segmentation and Cancer Detection

    Computer Systems Science and Engineering Editorial Office

    Computer Systems Science and Engineering, Vol.48, No.4, pp. 1083-1083, 2024, DOI:10.32604/csse.2024.054265 - 17 July 2024

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Bearing Fault Diagnosis Based on Optimized Feature Mode Decomposition and Improved Deep Belief Network

    Guangfei Jia*, Yanchao Meng, Zhiying Qin

    Structural Durability & Health Monitoring, Vol.18, No.4, pp. 445-463, 2024, DOI:10.32604/sdhm.2024.049298 - 05 June 2024

    Abstract The vibration signals of rolling bearings exhibit nonlinear and non-stationary characteristics under the influence of noise. In intelligent fault diagnosis, unprocessed signals will lead to weak fault characteristics and low diagnostic accuracy. To solve the above problem, a fault diagnosis method based on parameter optimization feature mode decomposition and improved deep belief networks is proposed. The feature mode decomposition is used to decompose the vibration signals. The parameter adaptation of feature mode decomposition is implemented by improved whale optimization algorithm including Levy flight strategy and adaptive weight. The selection of activation function and parameters is More > Graphic Abstract

    Bearing Fault Diagnosis Based on Optimized Feature Mode Decomposition and Improved Deep Belief Network

  • Open Access

    ARTICLE

    Deer Hunting Optimization with Deep Learning Enabled Emotion Classification on English Twitter Data

    Abdelwahed Motwakel1,*, Hala J. Alshahrani2, Jaber S. Alzahrani3, Ayman Yafoz4, Heba Mohsen5, Ishfaq Yaseen1, Amgad Atta Abdelmageed1, Mohamed I. Eldesouki6

    Computer Systems Science and Engineering, Vol.47, No.3, pp. 2741-2757, 2023, DOI:10.32604/csse.2023.034721 - 09 November 2023

    Abstract Currently, individuals use online social media, namely Facebook or Twitter, for sharing their thoughts and emotions. Detection of emotions on social networking sites’ finds useful in several applications in social welfare, commerce, public health, and so on. Emotion is expressed in several means, like facial and speech expressions, gestures, and written text. Emotion recognition in a text document is a content-based classification problem that includes notions from deep learning (DL) and natural language processing (NLP) domains. This article proposes a Deer Hunting Optimization with Deep Belief Network Enabled Emotion Classification (DHODBN-EC) on English Twitter Data… More >

  • Open Access

    ARTICLE

    Task Offloading and Resource Allocation in IoT Based Mobile Edge Computing Using Deep Learning

    Ilyоs Abdullaev1, Natalia Prodanova2, K. Aruna Bhaskar3, E. Laxmi Lydia4, Seifedine Kadry5,6,7, Jungeun Kim8,*

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1463-1477, 2023, DOI:10.32604/cmc.2023.038417 - 30 August 2023

    Abstract Recently, computation offloading has become an effective method for overcoming the constraint of a mobile device (MD) using computation-intensive mobile and offloading delay-sensitive application tasks to the remote cloud-based data center. Smart city benefitted from offloading to edge point. Consider a mobile edge computing (MEC) network in multiple regions. They comprise N MDs and many access points, in which every MD has M independent real-time tasks. This study designs a new Task Offloading and Resource Allocation in IoT-based MEC using Deep Learning with Seagull Optimization (TORA-DLSGO) algorithm. The proposed TORA-DLSGO technique addresses the resource management issue More >

  • Open Access

    ARTICLE

    Deep Belief Network for Lung Nodule Segmentation and Cancer Detection

    Sindhuja Manickavasagam*, Poonkuzhali Sugumaran

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 135-151, 2023, DOI:10.32604/csse.2023.030344 - 26 May 2023

    Abstract Cancer disease is a deadliest disease cause more dangerous one. By identifying the disease through Artificial intelligence to getting the mage features directly from patients. This paper presents the lung knob division and disease characterization by proposing an enhancement calculation. Most of the machine learning techniques failed to observe the feature dimensions leads inaccuracy in feature selection and classification. This cause inaccuracy in sensitivity and specificity rate to reduce the identification accuracy. To resolve this problem, to propose a Chicken Sine Cosine Algorithm based Deep Belief Network to identify the disease factor. The general technique… More >

  • Open Access

    ARTICLE

    Modified Sine Cosine Optimization with Adaptive Deep Belief Network for Movie Review Classification

    Hala J. Alshahrani1, Abdulbaset Gaddah2, Ehab S. Alnuzaili3, Mesfer Al Duhayyim4,*, Heba Mohsen5, Ishfaq Yaseen6, Amgad Atta Abdelmageed6, Gouse Pasha Mohammed6

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 283-300, 2023, DOI:10.32604/iasc.2023.035334 - 29 April 2023

    Abstract Sentiment analysis (SA) is a growing field at the intersection of computer science and computational linguistics that endeavors to automatically identify the sentiment presented in text. Computational linguistics aims to describe the fundamental methods utilized in the formation of computer methods for understanding natural language. Sentiment is classified as a negative or positive assessment articulated through language. SA can be commonly used for the movie review classification that involves the automatic determination that a review posted online (of a movie) can be negative or positive toward the thing that has been reviewed. Deep learning (DL)… More >

  • Open Access

    ARTICLE

    Hyperparameter Optimization Based Deep Belief Network for Clean Buses Using Solar Energy Model

    Shekaina Justin1,*, Wafaa Saleh1,2, Tasneem Al Ghamdi1, J. Shermina3

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 1091-1109, 2023, DOI:10.32604/iasc.2023.032589 - 29 April 2023

    Abstract Renewable energy has become a solution to the world’s energy concerns in recent years. Photovoltaic (PV) technology is the fastest technique to convert solar radiation into electricity. Solar-powered buses, metros, and cars use PV technology. Such technologies are always evolving. Included in the parameters that need to be analysed and examined include PV capabilities, vehicle power requirements, utility patterns, acceleration and deceleration rates, and storage module type and capacity, among others. PVPG is intermittent and weather-dependent. Accurate forecasting and modelling of PV system output power are key to managing storage, delivery, and smart grids. With… More >

  • Open Access

    ARTICLE

    Feature Selection with Deep Belief Network for Epileptic Seizure Detection on EEG Signals

    Srikanth Cherukuvada, R. Kayalvizhi*

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 4101-4118, 2023, DOI:10.32604/cmc.2023.036207 - 31 March 2023

    Abstract The term Epilepsy refers to a most commonly occurring brain disorder after a migraine. Early identification of incoming seizures significantly impacts the lives of people with Epilepsy. Automated detection of epileptic seizures (ES) has dramatically improved the life quality of the patients. Recent Electroencephalogram (EEG) related seizure detection mechanisms encountered several difficulties in real-time. The EEGs are the non-stationary signal, and seizure patterns would change with patients and recording sessions. Further, EEG data were disposed to wide noise varieties that adversely moved the recognition accuracy of ESs. Artificial intelligence (AI) methods in the domain of… More >

  • Open Access

    ARTICLE

    Computational Linguistics with Optimal Deep Belief Network Based Irony Detection in Social Media

    Manar Ahmed Hamza1,*, Hala J. Alshahrani2, Abdulkhaleq Q. A. Hassan3, Abdulbaset Gaddah4, Nasser Allheeib5, Suleiman Ali Alsaif6, Badriyya B. Al-onazi7, Heba Mohsen8

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 4137-4154, 2023, DOI:10.32604/cmc.2023.035237 - 31 March 2023

    Abstract Computational linguistics refers to an interdisciplinary field associated with the computational modelling of natural language and studying appropriate computational methods for linguistic questions. The number of social media users has been increasing over the last few years, which have allured researchers’ interest in scrutinizing the new kind of creative language utilized on the Internet to explore communication and human opinions in a better way. Irony and sarcasm detection is a complex task in Natural Language Processing (NLP). Irony detection has inferences in advertising, sentiment analysis (SA), and opinion mining. For the last few years, irony-aware… More >

Displaying 1-10 on page 1 of 37. Per Page