Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    Deep Autoencoder-Based Hybrid Network for Building Energy Consumption Forecasting

    Noman Khan1,2, Samee Ullah Khan1,2, Sung Wook Baik1,2,*

    Computer Systems Science and Engineering, Vol.48, No.1, pp. 153-173, 2024, DOI:10.32604/csse.2023.039407 - 26 January 2024

    Abstract Energy management systems for residential and commercial buildings must use an appropriate and efficient model to predict energy consumption accurately. To deal with the challenges in power management, the short-term Power Consumption (PC) prediction for household appliances plays a vital role in improving domestic and commercial energy efficiency. Big data applications and analytics have shown that data-driven load forecasting approaches can forecast PC in commercial and residential sectors and recognize patterns of electric usage in complex conditions. However, traditional Machine Learning (ML) algorithms and their features engineering procedure emphasize the practice of inefficient and ineffective… More >

  • Open Access

    ARTICLE

    A Lightweight Deep Autoencoder Scheme for Cyberattack Detection in the Internet of Things

    Maha Sabir1, Jawad Ahmad2,*, Daniyal Alghazzawi1

    Computer Systems Science and Engineering, Vol.46, No.1, pp. 57-72, 2023, DOI:10.32604/csse.2023.034277 - 20 January 2023

    Abstract The Internet of things (IoT) is an emerging paradigm that integrates devices and services to collect real-time data from surroundings and process the information at a very high speed to make a decision. Despite several advantages, the resource-constrained and heterogeneous nature of IoT networks makes them a favorite target for cybercriminals. A single successful attempt of network intrusion can compromise the complete IoT network which can lead to unauthorized access to the valuable information of consumers and industries. To overcome the security challenges of IoT networks, this article proposes a lightweight deep autoencoder (DAE) based… More >

  • Open Access

    ARTICLE

    Multi-Layer Reconstruction Errors Autoencoding and Density Estimate for Network Anomaly Detection

    Ruikun Li1,*, Yun Li2, Wen He1,3, Lirong Chen1, Jianchao Luo1

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.1, pp. 381-398, 2021, DOI:10.32604/cmes.2021.016264 - 28 June 2021

    Abstract Anomaly detection is an important method for intrusion detection. In recent years, unsupervised methods have been widely researched because they do not require labeling. For example, a nonlinear autoencoder can use reconstruction errors to attain the discrimination threshold. This method is not effective when the model complexity is high or the data contains noise. The method for detecting the density of compressed features in a hidden layer can be used to reduce the influence of noise on the selection of the threshold because the density of abnormal data in hidden layers is smaller than normal… More >

  • Open Access

    ARTICLE

    Enhanced Deep Autoencoder Based Feature Representation Learning for Intelligent Intrusion Detection System

    Thavavel Vaiyapuri*, Adel Binbusayyis

    CMC-Computers, Materials & Continua, Vol.68, No.3, pp. 3271-3288, 2021, DOI:10.32604/cmc.2021.017665 - 06 May 2021

    Abstract In the era of Big data, learning discriminant feature representation from network traffic is identified has as an invariably essential task for improving the detection ability of an intrusion detection system (IDS). Owing to the lack of accurately labeled network traffic data, many unsupervised feature representation learning models have been proposed with state-of-the-art performance. Yet, these models fail to consider the classification error while learning the feature representation. Intuitively, the learnt feature representation may degrade the performance of the classification task. For the first time in the field of intrusion detection, this paper proposes an… More >

Displaying 1-10 on page 1 of 4. Per Page