Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (17)
  • Open Access

    ARTICLE

    DeepBio: A Deep CNN and Bi-LSTM Learning for Person Identification Using Ear Biometrics

    Anshul Mahajan*, Sunil K. Singla

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1623-1649, 2024, DOI:10.32604/cmes.2024.054468 - 27 September 2024

    Abstract The identification of individuals through ear images is a prominent area of study in the biometric sector. Facial recognition systems have faced challenges during the COVID-19 pandemic due to mask-wearing, prompting the exploration of supplementary biometric measures such as ear biometrics. The research proposes a Deep Learning (DL) framework, termed DeepBio, using ear biometrics for human identification. It employs two DL models and five datasets, including IIT Delhi (IITD-I and IITD-II), annotated web images (AWI), mathematical analysis of images (AMI), and EARVN1. Data augmentation techniques such as flipping, translation, and Gaussian noise are applied to More >

  • Open Access

    ARTICLE

    A Degradation Type Adaptive and Deep CNN-Based Image Classification Model for Degraded Images

    Huanhua Liu, Wei Wang*, Hanyu Liu, Shuheng Yi, Yonghao Yu, Xunwen Yao

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 459-472, 2024, DOI:10.32604/cmes.2023.029084 - 22 September 2023

    Abstract Deep Convolutional Neural Networks (CNNs) have achieved high accuracy in image classification tasks, however, most existing models are trained on high-quality images that are not subject to image degradation. In practice, images are often affected by various types of degradation which can significantly impact the performance of CNNs. In this work, we investigate the influence of image degradation on three typical image classification CNNs and propose a Degradation Type Adaptive Image Classification Model (DTA-ICM) to improve the existing CNNs’ classification accuracy on degraded images. The proposed DTA-ICM comprises two key components: a Degradation Type Predictor… More >

  • Open Access

    ARTICLE

    Deep Convolutional Neural Networks for South Indian Mango Leaf Disease Detection and Classification

    Shaik Thaseentaj, S. Sudhakar Ilango*

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3593-3618, 2023, DOI:10.32604/cmc.2023.042496 - 26 December 2023

    Abstract The South Indian mango industry is confronting severe threats due to various leaf diseases, which significantly impact the yield and quality of the crop. The management and prevention of these diseases depend mainly on their early identification and accurate classification. The central objective of this research is to propose and examine the application of Deep Convolutional Neural Networks (CNNs) as a potential solution for the precise detection and categorization of diseases impacting the leaves of South Indian mango trees. Our study collected a rich dataset of leaf images representing different disease classes, including Anthracnose, Powdery… More >

  • Open Access

    ARTICLE

    A Deep CNN-LSTM-Based Feature Extraction for Cyber-Physical System Monitoring

    Alaa Omran Almagrabi*

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 2079-2093, 2023, DOI:10.32604/cmc.2023.039683 - 30 August 2023

    Abstract A potential concept that could be effective for multiple applications is a “cyber-physical system” (CPS). The Internet of Things (IoT) has evolved as a research area, presenting new challenges in obtaining valuable data through environmental monitoring. The existing work solely focuses on classifying the audio system of CPS without utilizing feature extraction. This study employs a deep learning method, CNN-LSTM, and two-way feature extraction to classify audio systems within CPS. The primary objective of this system, which is built upon a convolutional neural network (CNN) with Long Short Term Memory (LSTM), is to analyze the… More >

  • Open Access

    ARTICLE

    Atrous Convolution-Based Residual Deep CNN for Image Dehazing with Spider Monkey–Particle Swarm Optimization

    CH. Mohan Sai Kumar*, R. S. Valarmathi

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 1711-1728, 2023, DOI:10.32604/iasc.2023.038113 - 21 June 2023

    Abstract Image dehazing is a rapidly progressing research concept to enhance image contrast and resolution in computer vision applications. Owing to severe air dispersion, fog, and haze over the environment, hazy images pose specific challenges during information retrieval. With the advances in the learning theory, most of the learning-based techniques, in particular, deep neural networks are used for single-image dehazing. The existing approaches are extremely computationally complex, and the dehazed images are suffered from color distortion caused by the over-saturation and pseudo-shadow phenomenon. However, the slow convergence rate during training and haze residual is the two… More >

  • Open Access

    ARTICLE

    Identifying Severity of COVID-19 Medical Images by Categorizing Using HSDC Model

    K. Ravishankar*, C. Jothikumar

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 613-635, 2023, DOI:10.32604/csse.2023.038343 - 26 May 2023

    Abstract Since COVID-19 infections are increasing all over the world, there is a need for developing solutions for its early and accurate diagnosis is a must. Detection methods for COVID-19 include screening methods like Chest X-rays and Computed Tomography (CT) scans. More work must be done on preprocessing the datasets, such as eliminating the diaphragm portions, enhancing the image intensity, and minimizing noise. In addition to the detection of COVID-19, the severity of the infection needs to be estimated. The HSDC model is proposed to solve these problems, which will detect and classify the severity of… More >

  • Open Access

    ARTICLE

    Deep CNN Model for Multimodal Medical Image Denoising

    Walid El-Shafai1,2, Amira A. Mahmoud1, Anas M. Ali1,3, El-Sayed M. El-Rabaie1, Taha E. Taha1, Osama F. Zahran1, Adel S. El-Fishawy1, Naglaa F. Soliman4, Amel A. Alhussan5,*, Fathi E. Abd El-Samie1

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 3795-3814, 2022, DOI:10.32604/cmc.2022.029134 - 16 June 2022

    Abstract In the literature, numerous techniques have been employed to decrease noise in medical image modalities, including X-Ray (XR), Ultrasonic (Us), Computed Tomography (CT), Magnetic Resonance Imaging (MRI), and Positron Emission Tomography (PET). These techniques are organized into two main classes: the Multiple Image (MI) and the Single Image (SI) techniques. In the MI techniques, images usually obtained for the same area scanned from different points of view are used. A single image is used in the entire procedure in the SI techniques. SI denoising techniques can be carried out both in a transform or spatial… More >

  • Open Access

    ARTICLE

    Image Masking and Enhancement System for Melanoma Early Stage Detection

    Fikret Yalcinkaya*, Ali Erbas

    Intelligent Automation & Soft Computing, Vol.33, No.3, pp. 1961-1977, 2022, DOI:10.32604/iasc.2022.024961 - 24 March 2022

    Abstract Early stage melanoma detection (ESMD) is crucial as late detection kills. Computer aided diagnosis systems (CADS) integrated with high level algorithms are major tools capable of ESMD with high degree of accuracy, specificity, and sensitivity. CADS use the image and the information within the pixels of the image. Pixels’ characteristics and orientations determine the colour and shapes of the images as the pixels and associated environment are closely interrelated with the lesion. CADS integrated with Convolutional Neural Networks (CNN) specifically play a major role for ESMD with high degree of accuracy. The proposed system has… More >

  • Open Access

    ARTICLE

    SVM and KNN Based CNN Architectures for Plant Classification

    Sukanta Ghosh1, Amar Singh1, Kavita2,*, N. Z. Jhanjhi3, Mehedi Masud4, Sultan Aljahdali4

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 4257-4274, 2022, DOI:10.32604/cmc.2022.023414 - 14 January 2022

    Abstract Automatic plant classification through plant leaf is a classical problem in Computer Vision. Plants classification is challenging due to the introduction of new species with a similar pattern and look-a-like. Many efforts are made to automate plant classification using plant leaf, plant flower, bark, or stem. After much effort, it has been proven that leaf is the most reliable source for plant classification. But it is challenging to identify a plant with the help of leaf structure because plant leaf shows similarity in morphological variations, like sizes, textures, shapes, and venation. Therefore, it is required… More >

  • Open Access

    ARTICLE

    Breast Cancer Detection and Classification Using Deep CNN Techniques

    R. Rajakumari1,*, L. Kalaivani2

    Intelligent Automation & Soft Computing, Vol.32, No.2, pp. 1089-1107, 2022, DOI:10.32604/iasc.2022.020178 - 17 November 2021

    Abstract Breast cancer is a commonly diagnosed disease in women. Early detection, a personalized treatment approach, and better understanding are necessary for cancer patients to survive. In this work, a deep learning network and traditional convolution network were both employed with the Digital Database for Screening Mammography (DDSM) dataset. Breast cancer images were subjected to background removal followed by Wiener filtering and a contrast limited histogram equalization (CLAHE) filter for image restoration. Wavelet packet decomposition (WPD) using the Daubechies wavelet level 3 (db3) was employed to improve the smoothness of the images. For breast cancer recognition,… More >

Displaying 1-10 on page 1 of 17. Per Page