Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Fuzzy Logic Inference System for Managing Intensive Care Unit Resources Based on Knowledge Graph

    Ahmad F Subahi*, Areej Athama

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3801-3816, 2023, DOI:10.32604/cmc.2023.034522 - 26 December 2023

    Abstract With the rapid growth in the availability of digital health-related data, there is a great demand for the utilization of intelligent information systems within the healthcare sector. These systems can manage and manipulate this massive amount of health-related data and encourage different decision-making tasks. They can also provide various sustainable health services such as medical error reduction, diagnosis acceleration, and clinical services quality improvement. The intensive care unit (ICU) is one of the most important hospital units. However, there are limited rooms and resources in most hospitals. During times of seasonal diseases and pandemics, ICUs… More >

  • Open Access

    ARTICLE

    A Privacy-Preserving Algorithm for Clinical Decision-Support Systems Using Random Forest

    Alia Alabdulkarim1, Mznah Al-Rodhaan2, Yuan Tian*,3, Abdullah Al-Dhelaan2

    CMC-Computers, Materials & Continua, Vol.58, No.3, pp. 585-601, 2019, DOI:10.32604/cmc.2019.05637

    Abstract Clinical decision-support systems are technology-based tools that help healthcare providers enhance the quality of their services to satisfy their patients and earn their trust. These systems are used to improve physicians’ diagnostic processes in terms of speed and accuracy. Using data-mining techniques, a clinical decision support system builds a classification model from hospital’s dataset for diagnosing new patients using their symptoms. In this work, we propose a privacy-preserving clinical decision-support system that uses a privacy-preserving random forest algorithm to diagnose new symptoms without disclosing patients’ information and exposing them to cyber and network attacks. Solving More >

Displaying 1-10 on page 1 of 2. Per Page