Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (41)
  • Open Access

    ARTICLE

    Transforming Healthcare: AI-NLP Fusion Framework for Precision Decision-Making and Personalized Care Optimization in the Era of IoMT

    Soha Rawas1, Cerine Tafran1, Duaa AlSaeed2, Nadia Al-Ghreimil2,*

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 4575-4601, 2024, DOI:10.32604/cmc.2024.055307 - 19 December 2024

    Abstract In the rapidly evolving landscape of healthcare, the integration of Artificial Intelligence (AI) and Natural Language Processing (NLP) holds immense promise for revolutionizing data analytics and decision-making processes. Current techniques for personalized medicine, disease diagnosis, treatment recommendations, and resource optimization in the Internet of Medical Things (IoMT) vary widely, including methods such as rule-based systems, machine learning algorithms, and data-driven approaches. However, many of these techniques face limitations in accuracy, scalability, and adaptability to complex clinical scenarios. This study investigates the synergistic potential of AI-driven optimization techniques and NLP applications in the context of the… More >

  • Open Access

    ARTICLE

    Optimizing the Clinical Decision Support System (CDSS) by Using Recurrent Neural Network (RNN) Language Models for Real-Time Medical Query Processing

    Israa Ibraheem Al Barazanchi1,2,*, Wahidah Hashim1, Reema Thabit1, Mashary Nawwaf Alrasheedy3,4, Abeer Aljohan5, Jongwoon Park6, Byoungchol Chang6

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 4787-4832, 2024, DOI:10.32604/cmc.2024.055079 - 19 December 2024

    Abstract This research aims to enhance Clinical Decision Support Systems (CDSS) within Wireless Body Area Networks (WBANs) by leveraging advanced machine learning techniques. Specifically, we target the challenges of accurate diagnosis in medical imaging and sequential data analysis using Recurrent Neural Networks (RNNs) with Long Short-Term Memory (LSTM) layers and echo state cells. These models are tailored to improve diagnostic precision, particularly for conditions like rotator cuff tears in osteoporosis patients and gastrointestinal diseases. Traditional diagnostic methods and existing CDSS frameworks often fall short in managing complex, sequential medical data, struggling with long-term dependencies and data… More >

  • Open Access

    ARTICLE

    A New Framework for Scholarship Predictor Using a Machine Learning Approach

    Bushra Kanwal1, Rana Saud Shoukat2, Saif Ur Rehman2,*, Mahwish Kundi3, Tahani AlSaedi4, Abdulrahman Alahmadi4

    Intelligent Automation & Soft Computing, Vol.39, No.5, pp. 829-854, 2024, DOI:10.32604/iasc.2024.054645 - 31 October 2024

    Abstract Education is the base of the survival and growth of any state, but due to resource scarcity, students, particularly at the university level, are forced into a difficult situation. Scholarships are the most significant financial aid mechanisms developed to overcome such obstacles and assist the students in continuing with their higher studies. In this study, the convoluted situation of scholarship eligibility criteria, including parental income, responsibilities, and academic achievements, is addressed. In an attempt to maximize the scholarship selection process, numerous machine learning algorithms, including Support Vector Machines, Neural Networks, K-Nearest Neighbors, and the C4.5… More >

  • Open Access

    ARTICLE

    Fuzzy Multi-Criteria Decision Support System for the Best Anti-Aging Treatment Selection Process through Normal Wiggly Hesitant Fuzzy Sets

    Daekook Kang1, Ramya Lakshmanaraj2, Samayan Narayanamoorthy2, Navaneethakrishnan Suganthi Keerthana Devi2, Samayan Kalaiselvan3, Ranganathan Saraswathy4, Dragan Pamucar5,6,7,*, Vladimir Simic8,9

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4947-4972, 2024, DOI:10.32604/cmc.2024.055260 - 12 September 2024

    Abstract This socialized environment among educated and developed people causes them to focus more on their appearance and health, which turns them towards medical-related treatments, leading us to discuss anti-aging treatment methods for each age group, particularly for urban people who are interested in this. Some anti-aging therapies are used to address the alterations brought on by aging in human life without the need for surgery or negative effects. Five anti-aging therapies such as microdermabrasion or dermabrasion, laser resurfacing anti-aging skin treatments, chemical peels, dermal fillers for aged skin, and botox injections are considered in this… More >

  • Open Access

    ARTICLE

    Pulmonary Edema and Pleural Effusion Detection Using EfficientNet-V1-B4 Architecture and AdamW Optimizer from Chest X-Rays Images

    Anas AbuKaraki1, Tawfi Alrawashdeh1, Sumaya Abusaleh1, Malek Zakarya Alksasbeh1,*, Bilal Alqudah1, Khalid Alemerien2, Hamzah Alshamaseen3

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1055-1073, 2024, DOI:10.32604/cmc.2024.051420 - 18 July 2024

    Abstract This paper presents a novel multiclass system designed to detect pleural effusion and pulmonary edema on chest X-ray images, addressing the critical need for early detection in healthcare. A new comprehensive dataset was formed by combining 28,309 samples from the ChestX-ray14, PadChest, and CheXpert databases, with 10,287, 6022, and 12,000 samples representing Pleural Effusion, Pulmonary Edema, and Normal cases, respectively. Consequently, the preprocessing step involves applying the Contrast Limited Adaptive Histogram Equalization (CLAHE) method to boost the local contrast of the X-ray samples, then resizing the images to 380 × 380 dimensions, followed by using the data… More >

  • Open Access

    ARTICLE

    A Study on the Explainability of Thyroid Cancer Prediction: SHAP Values and Association-Rule Based Feature Integration Framework

    Sujithra Sankar1,*, S. Sathyalakshmi2

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 3111-3138, 2024, DOI:10.32604/cmc.2024.048408 - 15 May 2024

    Abstract In the era of advanced machine learning techniques, the development of accurate predictive models for complex medical conditions, such as thyroid cancer, has shown remarkable progress. Accurate predictive models for thyroid cancer enhance early detection, improve resource allocation, and reduce overtreatment. However, the widespread adoption of these models in clinical practice demands predictive performance along with interpretability and transparency. This paper proposes a novel association-rule based feature-integrated machine learning model which shows better classification and prediction accuracy than present state-of-the-art models. Our study also focuses on the application of SHapley Additive exPlanations (SHAP) values as… More >

  • Open Access

    ARTICLE

    Reinforcing Artificial Neural Networks through Traditional Machine Learning Algorithms for Robust Classification of Cancer

    Muhammad Hammad Waseem1, Malik Sajjad Ahmed Nadeem1,*, Ishtiaq Rasool Khan2, Seong-O-Shim3, Wajid Aziz1, Usman Habib4

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 4293-4315, 2023, DOI:10.32604/cmc.2023.036710 - 31 March 2023

    Abstract Machine Learning (ML)-based prediction and classification systems employ data and learning algorithms to forecast target values. However, improving predictive accuracy is a crucial step for informed decision-making. In the healthcare domain, data are available in the form of genetic profiles and clinical characteristics to build prediction models for complex tasks like cancer detection or diagnosis. Among ML algorithms, Artificial Neural Networks (ANNs) are considered the most suitable framework for many classification tasks. The network weights and the activation functions are the two crucial elements in the learning process of an ANN. These weights affect the… More >

  • Open Access

    ARTICLE

    A Novel Krill Herd Based Random Forest Algorithm for Monitoring Patient Health

    Md. Moddassir Alam1, Md Mottahir Alam2, Muhammad Moinuddin2,3, Mohammad Tauheed Ahmad4, Jabir Hakami5, Anis Ahmad Chaudhary6, Asif Irshad Khan7, Tauheed Khan Mohd8,*

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 4553-4571, 2023, DOI:10.32604/cmc.2023.032118 - 31 March 2023

    Abstract Artificial Intelligence (AI) is finding increasing application in healthcare monitoring. Machine learning systems are utilized for monitoring patient health through the use of IoT sensor, which keep track of the physiological state by way of various health data. Thus, early detection of any disease or derangement can aid doctors in saving patients’ lives. However, there are some challenges associated with predicting health status using the common algorithms, such as time requirements, chances of errors, and improper classification. We propose an Artificial Krill Herd based on the Random Forest (AKHRF) technique for monitoring patients’ health and… More >

  • Open Access

    ARTICLE

    Framework for a Computer-Aided Treatment Prediction (CATP) System for Breast Cancer

    Emad Abd Al Rahman1, Nur Intan Raihana Ruhaiyem1,*, Majed Bouchahma2, Kamarul Imran Musa3

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3007-3028, 2023, DOI:10.32604/iasc.2023.032580 - 15 March 2023

    Abstract This study offers a framework for a breast cancer computer-aided treatment prediction (CATP) system. The rising death rate among women due to breast cancer is a worldwide health concern that can only be addressed by early diagnosis and frequent screening. Mammography has been the most utilized breast imaging technique to date. Radiologists have begun to use computer-aided detection and diagnosis (CAD) systems to improve the accuracy of breast cancer diagnosis by minimizing human errors. Despite the progress of artificial intelligence (AI) in the medical field, this study indicates that systems that can anticipate a treatment… More >

  • Open Access

    ARTICLE

    Histogram-Based Decision Support System for Extraction and Classification of Leukemia in Blood Smear Images

    Neenavath Veeraiah1,*, Youseef Alotaibi2, Ahmad F. Subahi3

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1879-1900, 2023, DOI:10.32604/csse.2023.034658 - 09 February 2023

    Abstract An abnormality that develops in white blood cells is called leukemia. The diagnosis of leukemia is made possible by microscopic investigation of the smear in the periphery. Prior training is necessary to complete the morphological examination of the blood smear for leukemia diagnosis. This paper proposes a Histogram Threshold Segmentation Classifier (HTsC) for a decision support system. The proposed HTsC is evaluated based on the color and brightness variation in the dataset of blood smear images. Arithmetic operations are used to crop the nucleus based on automated approximation. White Blood Cell (WBC) segmentation is calculated… More >

Displaying 1-10 on page 1 of 41. Per Page