Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    Hierarchical Optimization Method for Federated Learning with Feature Alignment and Decision Fusion

    Ke Li1,*, Xiaofeng Wang1,2,*, Hu Wang1

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1391-1407, 2024, DOI:10.32604/cmc.2024.054484 - 15 October 2024

    Abstract In the realm of data privacy protection, federated learning aims to collaboratively train a global model. However, heterogeneous data between clients presents challenges, often resulting in slow convergence and inadequate accuracy of the global model. Utilizing shared feature representations alongside customized classifiers for individual clients emerges as a promising personalized solution. Nonetheless, previous research has frequently neglected the integration of global knowledge into local representation learning and the synergy between global and local classifiers, thereby limiting model performance. To tackle these issues, this study proposes a hierarchical optimization method for federated learning with feature alignment… More >

  • Open Access

    ARTICLE

    Multi-Model Fusion Framework Using Deep Learning for Visual-Textual Sentiment Classification

    Israa K. Salman Al-Tameemi1,3, Mohammad-Reza Feizi-Derakhshi1,*, Saeed Pashazadeh2, Mohammad Asadpour2

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 2145-2177, 2023, DOI:10.32604/cmc.2023.040997 - 30 August 2023

    Abstract Multimodal Sentiment Analysis (SA) is gaining popularity due to its broad application potential. The existing studies have focused on the SA of single modalities, such as texts or photos, posing challenges in effectively handling social media data with multiple modalities. Moreover, most multimodal research has concentrated on merely combining the two modalities rather than exploring their complex correlations, leading to unsatisfactory sentiment classification results. Motivated by this, we propose a new visual-textual sentiment classification model named Multi-Model Fusion (MMF), which uses a mixed fusion framework for SA to effectively capture the essential information and the… More >

  • Open Access

    ARTICLE

    Fusion Strategy for Improving Medical Image Segmentation

    Fahad Alraddady1, E. A. Zanaty2, Aida H. Abu bakr3, Walaa M. Abd-Elhafiez4,5,*

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 3627-3646, 2023, DOI:10.32604/cmc.2023.027606 - 31 October 2022

    Abstract In this paper, we combine decision fusion methods with four meta-heuristic algorithms (Particle Swarm Optimization (PSO) algorithm, Cuckoo search algorithm, modification of Cuckoo Search (CS McCulloch) algorithm and Genetic algorithm) in order to improve the image segmentation. The proposed technique based on fusing the data from Particle Swarm Optimization (PSO), Cuckoo search, modification of Cuckoo Search (CS McCulloch) and Genetic algorithms are obtained for improving magnetic resonance images (MRIs) segmentation. Four algorithms are used to compute the accuracy of each method while the outputs are passed to fusion methods. In order to obtain parts of More >

  • Open Access

    ARTICLE

    Spectral Vacancy Prediction Using Time Series Forecasting for Cognitive Radio Applications

    Vineetha Mathai*, P. Indumathi

    Intelligent Automation & Soft Computing, Vol.33, No.3, pp. 1729-1746, 2022, DOI:10.32604/iasc.2022.024234 - 24 March 2022

    Abstract An identification of unfilled primary user spectrum using a novel method is presented in this paper. Cooperation among users with the utilization of machine learning methods is analyzed. Learning methods are applied to construct the classifier, which selects the suitable fusion algorithm for the considered environment so that the out of band sensing is performed efficiently. Sensing performance is looked into with the existence of fading and it is observed that sensing performance degrades with fading which coincides with earlier findings. From the simulation, it can be inferred that Weibull fading outperforms all the other… More >

Displaying 1-10 on page 1 of 4. Per Page