Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (11)
  • Open Access

    PROCEEDINGS

    Mechanics Model of Face-Core and Inner Core Debonding of Composite Honeycomb Sandwich Structures

    Jian Xiong1,*, Pengcheng Xue1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.4, pp. 1-3, 2024, DOI:10.32604/icces.2024.011785

    Abstract Carbon fiber-reinforced plastic (CFRP) composite sandwich structures, due to their excellent mechanical properties and lightweight characteristics, are widely used in aerospace, marine, automotive, and wind turbine blade structures [1]. Different from traditional sandwich structures, composite honeycomb sandwich structures exhibit brittle properties, potentially leading to sudden and catastrophic debonding failure without any warning. Consequently, the interfaces between the face-core and the inner core may become the weakest parts of the structural system.
    This paper presents a theoretical and experimental investigation into the debonding behavior of the face-core and inner core in composite honeycomb sandwich structures. Based on… More >

  • Open Access

    ARTICLE

    A Modified Principal Component Analysis Method for Honeycomb Sandwich Panel Debonding Recognition Based on Distributed Optical Fiber Sensing Signals

    Shuai Chen1, Yinwei Ma2, Zhongshu Wang2, Zongmei Xu3, Song Zhang1, Jianle Li1, Hao Xu1, Zhanjun Wu1,*

    Structural Durability & Health Monitoring, Vol.18, No.2, pp. 125-141, 2024, DOI:10.32604/sdhm.2024.042594 - 22 March 2024

    Abstract The safety and integrity requirements of aerospace composite structures necessitate real-time health monitoring throughout their service life. To this end, distributed optical fiber sensors utilizing back Rayleigh scattering have been extensively deployed in structural health monitoring due to their advantages, such as lightweight and ease of embedding. However, identifying the precise location of damage from the optical fiber signals remains a critical challenge. In this paper, a novel approach which namely Modified Sliding Window Principal Component Analysis (MSWPCA) was proposed to facilitate automatic damage identification and localization via distributed optical fiber sensors. The proposed method More > Graphic Abstract

    A Modified Principal Component Analysis Method for Honeycomb Sandwich Panel Debonding Recognition Based on Distributed Optical Fiber Sensing Signals

  • Open Access

    PROCEEDINGS

    Fragile Points Method for Modeling Complex Structural Failure

    Mingjing Li1,*, Leiting Dong1, Satya N. Atluri2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.4, pp. 1-2, 2023, DOI:10.32604/icces.2023.09689

    Abstract The Fragile Points Method (FPM) is a discontinuous meshless method based on the Galerkin weak form [1]. In the FPM, the problem domain is discretized by spatial points and subdomains, and the displacement trial function of each subdomain is derived based on the points within the support domain. For this reason, the FPM doesn’t suffer from the mesh distortion and is suitable to model complex structural deformations. Furthermore, similar to the discontinuous Galerkin finite element method, the displacement trial functions used in the FPM is piece-wise continuous, and the numerical flux is introduced across each… More >

  • Open Access

    ARTICLE

    Damage Detection in CFST Column by Simulation of Ultrasonic Waves Using STFT-Based Spectrogram and Welch Power Spectral Density Estimate

    Nadom K. Mutlib1,*, Muna N. Ismael1, Shahrizan Baharom2

    Structural Durability & Health Monitoring, Vol.15, No.3, pp. 227-246, 2021, DOI:10.32604/sdhm.2021.010725 - 07 September 2021

    Abstract Structural health monitoring employs different tools and techniques to provide a prediction for damages that occur in various structures. Damages such as debond and cracks in concrete-filled steel tube column (CFST) are serious defects that threaten the integrity of the structural members. Ultrasonic waves monitoring applied to the CFST column is necessary to detect damages and quantify their size. However, without appropriate signal processing tools, the results of the monitoring process could not be crucial. In this research, a monitoring process based on a Multiphysics numerical simulation study was carried out. Two signal processing tools:… More >

  • Open Access

    ARTICLE

    Debonding Failure in FRP Reinforced SHCC Beams Induced from Multiple Flexural-Shear Cracks under Three-Point Bending Test

    Jihong Hu, Mingqing Sun*, Wei Huang, Yingjun Wang

    CMES-Computer Modeling in Engineering & Sciences, Vol.127, No.1, pp. 191-207, 2021, DOI:10.32604/cmes.2021.015365 - 30 March 2021

    Abstract Strain hardening cement-based composites (SHCC) beam externally bonded with glass fiber-reinforced polymer (FRP) plate was examined under three-point flexural test. The effects of the type of substrate used (plain cement mortar vs. SHCC), the use or not of a FRP plate to strengthen the SHCC beam, and the thickness of the FRP plate on the flexural performances were studied. Results show that the ultimate load of SHCC beams strengthened with FRP plate has improved greatly in comparison with plain SHCC beams. The deformation capacity of beams makes little change with an increase in the thickness of… More >

  • Open Access

    ARTICLE

    Flexural Performance of CFRP-Bamboo Scrimber Composite Beams

    Xizhi Wu1,2, Xueyou Huang3, Xianjun Li1,*, Yiqiang Wu1

    Journal of Renewable Materials, Vol.7, No.12, pp. 1295-1307, 2019, DOI:10.32604/jrm.2019.07839

    Abstract This study presents a new structure made up of bamboo scrimber and carbon fiber reinforced polymer (CFRP) to address the low stiffness and strength of bamboo scrimbers. Three-point bending test and finite element model were conducted to study the failure mode, strain-displacement relationship, load-displacement relationship and relationships between strain distribution, contact pressure and deflection, and adhesive debonding. The results indicated that the flexural modulus and static flexural strength of the composite beams were effectively increased thanks to the CFRP sheets. The flexural modulus of the composite specimens were 2.33-2.94 times that of bamboo scrimber beams, More >

  • Open Access

    ARTICLE

    A Numerical Modeling of Failure Mechanism for SiC Particle Reinforced Metal-Metrix Composites

    Qiubao Ouyang1, Di Zhang1,2, Xinhai Zhu3, Zhidong Han3

    CMC-Computers, Materials & Continua, Vol.41, No.1, pp. 37-54, 2014, DOI:10.3970/cmc.2014.041.037

    Abstract The present work is to investigate the failure mechanisms in the deformation of silicon carbide (SiC) particle reinforced aluminum Metal Matrix Composites (MMCs). To better deal with crack growth, a new numerical approach: the MLPG-Eshelby Method is used. This approach is based on the meshless local weak-forms of the Noether/Eshelby Energy Conservation Laws and it achieves a faster convergent rate and is of good accuracy. In addition, it is much easier for this method to allow material to separate in the material fracture processes, comparing to the conventional popular FEM based method. Based on a… More >

  • Open Access

    ARTICLE

    A Novel Approach to Modeling of Interfacial Fiber/Matrix Cyclic Debonding

    Paria Naghipour1, Evan J. Pineda2, Steven M. Arnold2

    CMC-Computers, Materials & Continua, Vol.35, No.1, pp. 17-33, 2013, DOI:10.3970/cmc.2013.035.017

    Abstract The micromechanics theory, generalized method of cells (GMC), was employed to simulate the debonding of fiber/matrix interfaces, within a repeating unit cell subjected to global, cyclic loading, utilizing a cyclic crack growth law. Cycle dependent, interfacial debonding was implemented as a new module to the available GMC formulation. The degradation of interfacial stresses with applied load cycles was achieved via progressive evolution of the interfacial compliance A periodic repeating unit cell, representing the fiber/matrix architecture of a composite, was subjected to combined normal and shear loadings, and degradation of the global transverse stress in successive More >

  • Open Access

    ARTICLE

    Modeling of Particle Debonding and Void Evolution in Particulated Ductile Composites

    B.R.Kim1 and H.K.Lee1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.47, No.3, pp. 253-282, 2009, DOI:10.3970/cmes.2009.047.253

    Abstract Damage characteristic of particulated ductile composites is a complex evolutionary phenomenon that includes particle debonding and void evolution with the accumulation of the plastic straining of the ductile matrix. In this paper, a micromechanical elastoplastic damage model for ductile matrix composites considering gradually incremental damage (particle debonding and void evolution) is proposed to predict the overall elastoplastic behavior and damage evolution in the composites. The constitutive damage model proposed in an earlier work by the authors [Kim and Lee (2009)] considering particle debonding is extended to accommodate the gradually incremental damage and elastoplastic behavior of More >

  • Open Access

    ARTICLE

    Progression of failure in fiber-reinforced materials

    R. Han1, M.S. Ingber1, H.L. Schreyer1

    CMC-Computers, Materials & Continua, Vol.4, No.3, pp. 163-176, 2006, DOI:10.3970/cmc.2006.004.163

    Abstract Decohesion is an important failure mode associated with fiber-reinforced composite materials. Analysis of failure progression at the fiber-matrix interfaces in fiber-reinforced composite materials is considered using a softening decohesion model consistent with thermodynamic concepts. In this model, the initiation of failure is given directly by a failure criterion. Damage is interpreted by the development of a discontinuity of displacement. The formulation describing the potential development of damage is governed by a discrete decohesive constitutive equation. Numerical simulations are performed using the direct boundary element method. Incremental decohesion simulations illustrate the progressive evolution of debonding zones More >

Displaying 1-10 on page 1 of 11. Per Page