Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    Production Capacity Prediction Method of Shale Oil Based on Machine Learning Combination Model

    Qin Qian1, Mingjing Lu1,2,*, Anhai Zhong1, Feng Yang1, Wenjun He1, Min Li1

    Energy Engineering, Vol.121, No.8, pp. 2167-2190, 2024, DOI:10.32604/ee.2024.049430

    Abstract The production capacity of shale oil reservoirs after hydraulic fracturing is influenced by a complex interplay involving geological characteristics, engineering quality, and well conditions. These relationships, nonlinear in nature, pose challenges for accurate description through physical models. While field data provides insights into real-world effects, its limited volume and quality restrict its utility. Complementing this, numerical simulation models offer effective support. To harness the strengths of both data-driven and model-driven approaches, this study established a shale oil production capacity prediction model based on a machine learning combination model. Leveraging fracturing development data from 236 wells… More >

  • Open Access

    ARTICLE

    Data-Driven Models for Predicting Solar Radiation in Semi-Arid Regions

    Mehdi Jamei1, Nadjem Bailek2,*, Kada Bouchouicha3, Muhammed A. Hassan4, Ahmed Elbeltagi5, Alban Kuriqi6, Nadhir Al-Ansar7, Javier Almorox8, El-Sayed M. El-kenawy9,10

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 1625-1640, 2023, DOI:10.32604/cmc.2023.031406

    Abstract Solar energy represents one of the most important renewable energy sources contributing to the energy transition process. Considering that the observation of daily global solar radiation (GSR) is not affordable in some parts of the globe, there is an imperative need to develop alternative ways to predict it. Therefore, the main objective of this study is to evaluate the performance of different hybrid data-driven techniques in predicting daily GSR in semi-arid regions, such as the majority of Spanish territory. Here, four ensemble-based hybrid models were developed by hybridizing Additive Regression (AR) with Random Forest (RF),… More >

  • Open Access

    ARTICLE

    The Estimation of the Higher Heating Value of Biochar by Data-Driven Modeling

    Jiefeng Chen1, Lisha Ding1, Pengyu Wang1, Weijin Zhang2, Jie Li3, Badr A. Mohamed4, Jie Chen1, Songqi Leng1, Tonggui Liu1, Lijian Leng2,*, Wenguang Zhou1,*

    Journal of Renewable Materials, Vol.10, No.6, pp. 1555-1574, 2022, DOI:10.32604/jrm.2022.018625

    Abstract Biomass is a carbon-neutral renewable energy resource. Biochar produced from biomass pyrolysis exhibits preferable characteristics and potential for fossil fuel substitution. For time- and cost-saving, it is vital to establish predictive models to predict biochar properties. However, limited studies focused on the accurate prediction of HHV of biochar by using proximate and ultimate analysis results of various biochar. Therefore, the multi-linear regression (MLR) and the machine learning (ML) models were developed to predict the measured HHV of biochar from the experiment data of this study. In detail, 52 types of biochars were produced by pyrolysis… More >

  • Open Access

    ARTICLE

    Optimization of Heat Treatment Scheduling for Hot Press Forging Using Data-Driven Models

    Seyoung Kim1, Jeonghoon Choi1, Kwang Ryel Ryu2,*

    Intelligent Automation & Soft Computing, Vol.32, No.1, pp. 207-220, 2022, DOI:10.32604/iasc.2022.021752

    Abstract Scheduling heat treatment jobs in a hot press forging factory involves forming batches of multiple workpieces for the given furnaces, determining the start time of heating each batch, and sorting out the order of cooling the heated workpieces. Among these, forming batches is particularly difficult because of the various constraints that must be satisfied. This paper proposes an optimization method based on an evolutionary algorithm to search for a heat treatment schedule of maximum productivity with minimum energy cost, satisfying various constraints imposed on the batches. Our method encodes a candidate solution as a permutation More >

  • Open Access

    ARTICLE

    A Self-Learning Data-Driven Development of Failure Criteria of Unknown Anisotropic Ductile Materials with Deep Learning Neural Network

    Kyungsuk Jang1, Gun Jin Yun2,*

    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1091-1120, 2021, DOI:10.32604/cmc.2020.012911

    Abstract This paper first proposes a new self-learning data-driven methodology that can develop the failure criteria of unknown anisotropic ductile materials from the minimal number of experimental tests. Establishing failure criteria of anisotropic ductile materials requires time-consuming tests and manual data evaluation. The proposed method can overcome such practical challenges. The methodology is formalized by combining four ideas: 1) The deep learning neural network (DLNN)-based material constitutive model, 2) Self-learning inverse finite element (SELIFE) simulation, 3) Algorithmic identification of failure points from the self-learned stress-strain curves and 4) Derivation of the failure criteria through symbolic regression More >

Displaying 1-10 on page 1 of 5. Per Page