Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    TGAIN: Geospatial Data Recovery Algorithm Based on GAIN-LSTM

    Lechan Yang1,*, Li Li2, Shouming Ma3

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1471-1489, 2024, DOI:10.32604/cmc.2024.056379 - 15 October 2024

    Abstract Accurate geospatial data are essential for geographic information systems (GIS), environmental monitoring, and urban planning. The deep integration of the open Internet and geographic information technology has led to increasing challenges in the integrity and security of spatial data. In this paper, we consider abnormal spatial data as missing data and focus on abnormal spatial data recovery. Existing geospatial data recovery methods require complete datasets for training, resulting in time-consuming data recovery and lack of generalization. To address these issues, we propose a GAIN-LSTM-based geospatial data recovery method (TGAIN), which consists of two main works:… More >

  • Open Access

    ARTICLE

    Accurate and Computational Efficient Joint Multiple Kronecker Pursuit for Tensor Data Recovery

    Weize Sun1, Peng Zhang1,*, Jingxin Xu2, Huochao Tan3

    CMC-Computers, Materials & Continua, Vol.68, No.2, pp. 2111-2126, 2021, DOI:10.32604/cmc.2021.016804 - 13 April 2021

    Abstract This paper addresses the problem of tensor completion from limited samplings. Generally speaking, in order to achieve good recovery result, many tensor completion methods employ alternative optimization or minimization with SVD operations, leading to a high computational complexity. In this paper, we aim to propose algorithms with high recovery accuracy and moderate computational complexity. It is shown that the data to be recovered contains structure of Kronecker Tensor decomposition under multiple patterns, and therefore the tensor completion problem becomes a Kronecker rank optimization one, which can be further relaxed into tensor Frobenius-norm minimization with a… More >

  • Open Access

    ARTICLE

    Electrical Data Matrix Decomposition in Smart Grid

    Qian Dang1, Huafeng Zhang1, Bo Zhao2, Yanwen He2, Shiming He3,*, Hye-Jin Kim4

    Journal on Internet of Things, Vol.1, No.1, pp. 1-7, 2019, DOI:10.32604/jiot.2019.05804

    Abstract As the development of smart grid and energy internet, this leads to a significant increase in the amount of data transmitted in real time. Due to the mismatch with communication networks that were not designed to carry high-speed and real time data, data losses and data quality degradation may happen constantly. For this problem, according to the strong spatial and temporal correlation of electricity data which is generated by human’s actions and feelings, we build a low-rank electricity data matrix where the row is time and the column is user. Inspired by matrix decomposition, we More >

Displaying 1-10 on page 1 of 3. Per Page