Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    A New Privacy-Preserving Data Publishing Algorithm Utilizing Connectivity-Based Outlier Factor and Mondrian Techniques

    Burak Cem Kara1,2,*, Can Eyüpoğlu1

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1515-1535, 2023, DOI:10.32604/cmc.2023.040274 - 30 August 2023

    Abstract Developing a privacy-preserving data publishing algorithm that stops individuals from disclosing their identities while not ignoring data utility remains an important goal to achieve. Because finding the trade-off between data privacy and data utility is an NP-hard problem and also a current research area. When existing approaches are investigated, one of the most significant difficulties discovered is the presence of outlier data in the datasets. Outlier data has a negative impact on data utility. Furthermore, k-anonymity algorithms, which are commonly used in the literature, do not provide adequate protection against outlier data. In this study, a… More >

  • Open Access

    ARTICLE

    Slicing-Based Enhanced Method for Privacy-Preserving in Publishing Big Data

    Mohammed BinJubier1, Mohd Arfian Ismail1, Abdulghani Ali Ahmed2,*, Ali Safaa Sadiq3

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 3665-3686, 2022, DOI:10.32604/cmc.2022.024663 - 29 March 2022

    Abstract Publishing big data and making it accessible to researchers is important for knowledge building as it helps in applying highly efficient methods to plan, conduct, and assess scientific research. However, publishing and processing big data poses a privacy concern related to protecting individuals’ sensitive information while maintaining the usability of the published data. Several anonymization methods, such as slicing and merging, have been designed as solutions to the privacy concerns for publishing big data. However, the major drawback of merging and slicing is the random permutation procedure, which does not always guarantee complete protection against… More >

  • Open Access

    ARTICLE

    A Differential Privacy Based (k-Ψ)-Anonymity Method for Trajectory Data Publishing

    Hongyu Chen1, Shuyu Li1, *, Zhaosheng Zhang1

    CMC-Computers, Materials & Continua, Vol.65, No.3, pp. 2665-2685, 2020, DOI:10.32604/cmc.2020.010965 - 16 September 2020

    Abstract In recent years, mobile Internet technology and location based services have wide application. Application providers and users have accumulated huge amount of trajectory data. While publishing and analyzing user trajectory data have brought great convenience for people, the disclosure risks of user privacy caused by the trajectory data publishing are also becoming more and more prominent. Traditional k-anonymous trajectory data publishing technologies cannot effectively protect user privacy against attackers with strong background knowledge. For privacy preserving trajectory data publishing, we propose a differential privacy based (k-Ψ)-anonymity method to defend against re-identification and probabilistic inference attack. The… More >

Displaying 1-10 on page 1 of 3. Per Page