Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Comparative Evaluation of Data Mining Algorithms in Breast Cancer

    Fuad A. M. Al-Yarimi*

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 633-645, 2023, DOI:10.32604/cmc.2023.038858 - 31 October 2023

    Abstract Unchecked breast cell growth is one of the leading causes of death in women globally and is the cause of breast cancer. The only method to avoid breast cancer-related deaths is through early detection and treatment. The proper classification of malignancies is one of the most significant challenges in the medical industry. Due to their high precision and accuracy, machine learning techniques are extensively employed for identifying and classifying various forms of cancer. Several data mining algorithms were studied and implemented by the author of this review and compared them to the present parameters and… More >

  • Open Access

    ARTICLE

    Enhancing Network Intrusion Detection Model Using Machine Learning Algorithms

    Nancy Awadallah Awad*

    CMC-Computers, Materials & Continua, Vol.67, No.1, pp. 979-990, 2021, DOI:10.32604/cmc.2021.014307 - 12 January 2021

    Abstract After the digital revolution, large quantities of data have been generated with time through various networks. The networks have made the process of data analysis very difficult by detecting attacks using suitable techniques. While Intrusion Detection Systems (IDSs) secure resources against threats, they still face challenges in improving detection accuracy, reducing false alarm rates, and detecting the unknown ones. This paper presents a framework to integrate data mining classification algorithms and association rules to implement network intrusion detection. Several experiments have been performed and evaluated to assess various machine learning classifiers based on the KDD99… More >

Displaying 1-10 on page 1 of 2. Per Page