Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    FedDPL: Federated Dynamic Prototype Learning for Privacy-Preserving Malware Analysis across Heterogeneous Clients

    Danping Niu1, Yuan Ping1,*, Chun Guo2, Xiaojun Wang3, Bin Hao4

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073630 - 12 January 2026

    Abstract With the increasing complexity of malware attack techniques, traditional detection methods face significant challenges, such as privacy preservation, data heterogeneity, and lacking category information. To address these issues, we propose Federated Dynamic Prototype Learning (FedDPL) for malware classification by integrating Federated Learning with a specifically designed K-means. Under the Federated Learning framework, model training occurs locally without data sharing, effectively protecting user data privacy and preventing the leakage of sensitive information. Furthermore, to tackle the challenges of data heterogeneity and the lack of category information, FedDPL introduces a dynamic prototype learning mechanism, which adaptively adjusts the More >

  • Open Access

    ARTICLE

    Hierarchical Optimization Method for Federated Learning with Feature Alignment and Decision Fusion

    Ke Li1,*, Xiaofeng Wang1,2,*, Hu Wang1

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1391-1407, 2024, DOI:10.32604/cmc.2024.054484 - 15 October 2024

    Abstract In the realm of data privacy protection, federated learning aims to collaboratively train a global model. However, heterogeneous data between clients presents challenges, often resulting in slow convergence and inadequate accuracy of the global model. Utilizing shared feature representations alongside customized classifiers for individual clients emerges as a promising personalized solution. Nonetheless, previous research has frequently neglected the integration of global knowledge into local representation learning and the synergy between global and local classifiers, thereby limiting model performance. To tackle these issues, this study proposes a hierarchical optimization method for federated learning with feature alignment… More >

Displaying 1-10 on page 1 of 2. Per Page