Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    GraphCWGAN-GP: A Novel Data Augmenting Approach for Imbalanced Encrypted Traffic Classification

    Jiangtao Zhai1,*, Peng Lin1, Yongfu Cui1, Lilong Xu1, Ming Liu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.2, pp. 2069-2092, 2023, DOI:10.32604/cmes.2023.023764 - 06 February 2023

    Abstract Encrypted traffic classification has become a hot issue in network security research. The class imbalance problem of traffic samples often causes the deterioration of Machine Learning based classifier performance. Although the Generative Adversarial Network (GAN) method can generate new samples by learning the feature distribution of the original samples, it is confronted with the problems of unstable training and mode collapse. To this end, a novel data augmenting approach called GraphCWGAN-GP is proposed in this paper. The traffic data is first converted into grayscale images as the input for the proposed model. Then, the minority… More >

Displaying 1-10 on page 1 of 1. Per Page