Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (84)
  • Open Access


    Data Layout and Scheduling Tasks in a Meteorological Cloud Environment

    Kunfu Wang, Yongsheng Hao, Jie Cao*

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 1033-1052, 2023, DOI:10.32604/iasc.2023.038036

    Abstract Meteorological model tasks require considerable meteorological basis data to support their execution. However, if the task and the meteorological datasets are located on different clouds, that enhances the cost, execution time, and energy consumption of execution meteorological tasks. Therefore, the data layout and task scheduling may work together in the meteorological cloud to avoid being in various locations. To the best of our knowledge, this is the first paper that tries to schedule meteorological tasks with the help of the meteorological data set layout. First, we use the FP-Growth-M (frequent-pattern growth for meteorological model datasets) method to mine the relationship… More >

  • Open Access


    A Novel Cluster Analysis-Based Crop Dataset Recommendation Method in Precision Farming

    K. R. Naveen Kumar1, Husam Lahza2, B. R. Sreenivasa3,*, Tawfeeq Shawly4, Ahmed A. Alsheikhy5, H. Arunkumar1, C. R. Nirmala1

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3239-3260, 2023, DOI:10.32604/csse.2023.036629

    Abstract Data mining and analytics involve inspecting and modeling large pre-existing datasets to discover decision-making information. Precision agriculture uses data mining to advance agricultural developments. Many farmers aren’t getting the most out of their land because they don’t use precision agriculture. They harvest crops without a well-planned recommendation system. Future crop production is calculated by combining environmental conditions and management behavior, yielding numerical and categorical data. Most existing research still needs to address data preprocessing and crop categorization/classification. Furthermore, statistical analysis receives less attention, despite producing more accurate and valid results. The study was conducted on a dataset about Karnataka state,… More >

  • Open Access


    A Data Mining Approach to Detecting Bias and Favoritism in Public Procurement

    Yeferson Torres-Berru1,2,*, Vivian F. Lopez-Batista1, Lorena Conde Zhingre3

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3501-3516, 2023, DOI:10.32604/iasc.2023.035367

    Abstract In a public procurement process, corruption can occur at each stage, favoring a participant with a previous agreement, which can result in over-pricing and purchases of substandard products, as well as gender discrimination. This paper’s aim is to detect biased purchases using a Spanish Language corpus, analyzing text from the questions and answers registry platform by applicants in a public procurement process in Ecuador. Additionally, gender bias is detected, promoting both men and women to participate under the same conditions. In order to detect gender bias and favoritism towards certain providers by contracting entities, the study proposes a unique hybrid… More >

  • Open Access


    Evolutionary Algorithm Based Feature Subset Selection for Students Academic Performance Analysis

    Ierin Babu1,*, R. MathuSoothana2, S. Kumar2

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3621-3636, 2023, DOI:10.32604/iasc.2023.033791

    Abstract Educational Data Mining (EDM) is an emergent discipline that concentrates on the design of self-learning and adaptive approaches. Higher education institutions have started to utilize analytical tools to improve students’ grades and retention. Prediction of students’ performance is a difficult process owing to the massive quantity of educational data. Therefore, Artificial Intelligence (AI) techniques can be used for educational data mining in a big data environment. At the same time, in EDM, the feature selection process becomes necessary in creation of feature subsets. Since the feature selection performance affects the predictive performance of any model, it is important to elaborately… More >

  • Open Access


    AWSD: An Aircraft Wing Dataset Created by an Automatic Workflow for Data Mining in Geometric Processing

    Xiang Su1, Nan Li1,*, Yuedi Hu1, Haisheng Li2

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.3, pp. 2935-2956, 2023, DOI:10.32604/cmes.2023.026083

    Abstract This paper introduces an aircraft wing simulation data set (AWSD) created by an automatic workflow based on creating models, meshing, simulating the wing flight flow field solution, and parameterizing solution results. AWSD is a flexible, independent wing collection of simulations with specific engineering requirements. The data set is applicable to handle computer geometry processing tasks. In contrast to the existing 3D model data set, there are some advantages the scale of this data set is not limited by the collection source, the data files have high quality, no defects, redundancy, and other problems, and the models and simulation are all… More > Graphic Abstract

    AWSD: An Aircraft Wing Dataset Created by an Automatic Workflow for Data Mining in Geometric Processing

  • Open Access


    A Novel Metadata Based Multi-Label Document Classification Technique

    Naseer Ahmed Sajid1, Munir Ahmad1, Atta-ur Rahman2,*, Gohar Zaman3, Mohammed Salih Ahmed4, Nehad Ibrahim2, Mohammed Imran B. Ahmed4, Gomathi Krishnasamy6, Reem Alzaher2, Mariam Alkharraa2, Dania AlKhulaifi2, Maryam AlQahtani2, Asiya A. Salam6, Linah Saraireh5, Mohammed Gollapalli6, Rashad Ahmed7

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 2195-2214, 2023, DOI:10.32604/csse.2023.033844

    Abstract From the beginning, the process of research and its publication is an ever-growing phenomenon and with the emergence of web technologies, its growth rate is overwhelming. On a rough estimate, more than thirty thousand research journals have been issuing around four million papers annually on average. Search engines, indexing services, and digital libraries have been searching for such publications over the web. Nevertheless, getting the most relevant articles against the user requests is yet a fantasy. It is mainly because the articles are not appropriately indexed based on the hierarchies of granular subject classification. To overcome this issue, researchers are… More >

  • Open Access


    A Novel Meta-Heuristic Optimization Algorithm in White Blood Cells Classification

    Khaled A. Fathy, Humam K. Yaseen*, Mohammad T. Abou-Kreisha, Kamal A. ElDahshan

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 1527-1545, 2023, DOI:10.32604/cmc.2023.036322

    Abstract Some human diseases are recognized through of each type of White Blood Cell (WBC) count, so detecting and classifying each type is important for human healthcare. The main aim of this paper is to propose a computer-aided WBCs utility analysis tool designed, developed, and evaluated to classify WBCs into five types namely neutrophils, eosinophils, lymphocytes, monocytes, and basophils. Using a computer-artificial model reduces resource and time consumption. Various pre-trained deep learning models have been used to extract features, including AlexNet, Visual Geometry Group (VGG), Residual Network (ResNet), which belong to different taxonomy types of deep learning architectures. Also, Binary Border… More >

  • Open Access


    Human Verification over Activity Analysis via Deep Data Mining

    Kumar Abhishek1,*, Sheikh Badar ud din Tahir2

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 1391-1409, 2023, DOI:10.32604/cmc.2023.035894

    Abstract Human verification and activity analysis (HVAA) are primarily employed to observe, track, and monitor human motion patterns using red-green-blue (RGB) images and videos. Interpreting human interaction using RGB images is one of the most complex machine learning tasks in recent times. Numerous models rely on various parameters, such as the detection rate, position, and direction of human body components in RGB images. This paper presents robust human activity analysis for event recognition via the extraction of contextual intelligence-based features. To use human interaction image sequences as input data, we first perform a few denoising steps. Then, human-to-human analyses are employed… More >

  • Open Access


    Optimal Machine Learning Driven Sentiment Analysis on COVID-19 Twitter Data

    Bahjat Fakieh1, Abdullah S. AL-Malaise AL-Ghamdi1,2,3, Farrukh Saleem1, Mahmoud Ragab2,4,5,6,*

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 81-97, 2023, DOI:10.32604/cmc.2023.033406

    Abstract The outbreak of the pandemic, caused by Coronavirus Disease 2019 (COVID-19), has affected the daily activities of people across the globe. During COVID-19 outbreak and the successive lockdowns, Twitter was heavily used and the number of tweets regarding COVID-19 increased tremendously. Several studies used Sentiment Analysis (SA) to analyze the emotions expressed through tweets upon COVID-19. Therefore, in current study, a new Artificial Bee Colony (ABC) with Machine Learning-driven SA (ABCML-SA) model is developed for conducting Sentiment Analysis of COVID-19 Twitter data. The prime focus of the presented ABCML-SA model is to recognize the sentiments expressed in tweets made upon… More >

  • Open Access


    Fusing Spatio-Temporal Contexts into DeepFM for Taxi Pick-Up Area Recommendation

    Yizhi Liu1,3, Rutian Qing1,3, Yijiang Zhao1,3,*, Xuesong Wang1,3, Zhuhua Liao1,3, Qinghua Li1,2, Buqing Cao1,3

    Computer Systems Science and Engineering, Vol.45, No.3, pp. 2505-2519, 2023, DOI:10.32604/csse.2023.021615

    Abstract Short-term GPS data based taxi pick-up area recommendation can improve the efficiency and reduce the overheads. But how to alleviate sparsity and further enhance accuracy is still challenging. Addressing at these issues, we propose to fuse spatio-temporal contexts into deep factorization machine (STC_DeepFM) offline for pick-up area recommendation, and within the area to recommend pick-up points online using factorization machine (FM). Firstly, we divide the urban area into several grids with equal size. Spatio-temporal contexts are destilled from pick-up points or points-of-interest (POIs) belonged to the preceding grids. Secondly, the contexts are integrated into deep factorization machine (DeepFM) to mine… More >

Displaying 1-10 on page 1 of 84. Per Page  

Share Link