Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,639)
  • Open Access

    REVIEW

    Structural Modal Parameter Recognition and Related Damage Identification Methods under Environmental Excitations: A Review

    Chao Zhang1, Shang-Xi Lai1, Hua-Ping Wang1,2,*

    Structural Durability & Health Monitoring, Vol.19, No.1, pp. 25-54, 2025, DOI:10.32604/sdhm.2024.053662 - 15 November 2024

    Abstract Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure. Therefore, it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring (SHM) system, so as to provide a scientific basis for structural damage identification and dynamic model modification. In view of this, this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters. The paper primarily introduces data-driven modal parameter recognition methods… More >

  • Open Access

    ARTICLE

    Dynamic Interaction Analysis of Coupled Axial-Torsional-Lateral Mechanical Vibrations in Rotary Drilling Systems

    Sabrina Meddah1,2,*, Sid Ahmed Tadjer3, Abdelhakim Idir4, Kong Fah Tee5,6,*, Mohamed Zinelabidine Doghmane1, Madjid Kidouche1

    Structural Durability & Health Monitoring, Vol.19, No.1, pp. 77-103, 2025, DOI:10.32604/sdhm.2024.053541 - 15 November 2024

    Abstract Maintaining the integrity and longevity of structures is essential in many industries, such as aerospace, nuclear, and petroleum. To achieve the cost-effectiveness of large-scale systems in petroleum drilling, a strong emphasis on structural durability and monitoring is required. This study focuses on the mechanical vibrations that occur in rotary drilling systems, which have a substantial impact on the structural integrity of drilling equipment. The study specifically investigates axial, torsional, and lateral vibrations, which might lead to negative consequences such as bit-bounce, chaotic whirling, and high-frequency stick-slip. These events not only hinder the efficiency of drilling… More >

  • Open Access

    ARTICLE

    Data-Driven Modeling for Wind Turbine Blade Loads Based on Deep Neural Network

    Jianyong Ao1, Yanping Li1, Shengqing Hu1, Songyu Gao2, Qi Yao2,*

    Energy Engineering, Vol.121, No.12, pp. 3825-3841, 2024, DOI:10.32604/ee.2024.055250 - 22 November 2024

    Abstract Blades are essential components of wind turbines. Reducing their fatigue loads during operation helps to extend their lifespan, but it is difficult to quickly and accurately calculate the fatigue loads of blades. To solve this problem, this paper innovatively designs a data-driven blade load modeling method based on a deep learning framework through mechanism analysis, feature selection, and model construction. In the mechanism analysis part, the generation mechanism of blade loads and the load theoretical calculation method based on material damage theory are analyzed, and four measurable operating state parameters related to blade loads are… More >

  • Open Access

    REVIEW

    Software Reliability Prediction Using Ensemble Learning on Selected Features in Imbalanced and Balanced Datasets: A Review

    Suneel Kumar Rath1, Madhusmita Sahu1, Shom Prasad Das2, Junali Jasmine Jena3, Chitralekha Jena4, Baseem Khan5,6,7,*, Ahmed Ali7, Pitshou Bokoro7

    Computer Systems Science and Engineering, Vol.48, No.6, pp. 1513-1536, 2024, DOI:10.32604/csse.2024.057067 - 22 November 2024

    Abstract Redundancy, correlation, feature irrelevance, and missing samples are just a few problems that make it difficult to analyze software defect data. Additionally, it might be challenging to maintain an even distribution of data relating to both defective and non-defective software. The latter software class’s data are predominately present in the dataset in the majority of experimental situations. The objective of this review study is to demonstrate the effectiveness of combining ensemble learning and feature selection in improving the performance of defect classification. Besides the successful feature selection approach, a novel variant of the ensemble learning… More >

  • Open Access

    ARTICLE

    Improving Smart Home Security via MQTT: Maximizing Data Privacy and Device Authentication Using Elliptic Curve Cryptography

    Zainatul Yushaniza Mohamed Yusoff1, Mohamad Khairi Ishak2,*, Lukman A. B. Rahim3, Mohd Shahrimie Mohd Asaari1

    Computer Systems Science and Engineering, Vol.48, No.6, pp. 1669-1697, 2024, DOI:10.32604/csse.2024.056741 - 22 November 2024

    Abstract The rapid adoption of Internet of Things (IoT) technologies has introduced significant security challenges across the physical, network, and application layers, particularly with the widespread use of the Message Queue Telemetry Transport (MQTT) protocol, which, while efficient in bandwidth consumption, lacks inherent security features, making it vulnerable to various cyber threats. This research addresses these challenges by presenting a secure, lightweight communication proxy that enhances the scalability and security of MQTT-based Internet of Things (IoT) networks. The proposed solution builds upon the Dang-Scheme, a mutual authentication protocol designed explicitly for resource-constrained environments and enhances it… More >

  • Open Access

    REVIEW

    A Systematic Review of Automated Classification for Simple and Complex Query SQL on NoSQL Database

    Nurhadi, Rabiah Abdul Kadir*, Ely Salwana Mat Surin, Mahidur R. Sarker*

    Computer Systems Science and Engineering, Vol.48, No.6, pp. 1405-1435, 2024, DOI:10.32604/csse.2024.051851 - 22 November 2024

    Abstract A data lake (DL), abbreviated as DL, denotes a vast reservoir or repository of data. It accumulates substantial volumes of data and employs advanced analytics to correlate data from diverse origins containing various forms of semi-structured, structured, and unstructured information. These systems use a flat architecture and run different types of data analytics. NoSQL databases are nontabular and store data in a different manner than the relational table. NoSQL databases come in various forms, including key-value pairs, documents, wide columns, and graphs, each based on its data model. They offer simpler scalability and generally outperform… More >

  • Open Access

    ARTICLE

    Classification of Cybersecurity Threats, Vulnerabilities and Countermeasures in Database Systems

    Mohammed Amin Almaiah1,*, Leen Mohammad Saqr1, Leen Ahmad Al-Rawwash1, Layan Ahmed Altellawi1, Romel Al-Ali2,*, Omar Almomani3

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 3189-3220, 2024, DOI:10.32604/cmc.2024.057673 - 18 November 2024

    Abstract Database systems have consistently been prime targets for cyber-attacks and threats due to the critical nature of the data they store. Despite the increasing reliance on database management systems, this field continues to face numerous cyber-attacks. Database management systems serve as the foundation of any information system or application. Any cyber-attack can result in significant damage to the database system and loss of sensitive data. Consequently, cyber risk classifications and assessments play a crucial role in risk management and establish an essential framework for identifying and responding to cyber threats. Risk assessment aids in understanding… More >

  • Open Access

    ARTICLE

    An Investigation of Frequency-Domain Pruning Algorithms for Accelerating Human Activity Recognition Tasks Based on Sensor Data

    Jian Su1, Haijian Shao1,2,*, Xing Deng1, Yingtao Jiang2

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2219-2242, 2024, DOI:10.32604/cmc.2024.057604 - 18 November 2024

    Abstract The rapidly advancing Convolutional Neural Networks (CNNs) have brought about a paradigm shift in various computer vision tasks, while also garnering increasing interest and application in sensor-based Human Activity Recognition (HAR) efforts. However, the significant computational demands and memory requirements hinder the practical deployment of deep networks in resource-constrained systems. This paper introduces a novel network pruning method based on the energy spectral density of data in the frequency domain, which reduces the model’s depth and accelerates activity inference. Unlike traditional pruning methods that focus on the spatial domain and the importance of filters, this… More >

  • Open Access

    ARTICLE

    An Adaptive Congestion Control Optimization Strategy in SDN-Based Data Centers

    Jinlin Xu1,2, Wansu Pan1,*, Haibo Tan1,2, Longle Cheng1, Xiaofeng Li1,2

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2709-2726, 2024, DOI:10.32604/cmc.2024.056925 - 18 November 2024

    Abstract The traffic within data centers exhibits bursts and unpredictable patterns. This rapid growth in network traffic has two consequences: it surpasses the inherent capacity of the network’s link bandwidth and creates an imbalanced network load. Consequently, persistent overload situations eventually result in network congestion. The Software Defined Network (SDN) technology is employed in data centers as a network architecture to enhance performance. This paper introduces an adaptive congestion control strategy, named DA-DCTCP, for SDN-based Data Centers. It incorporates Explicit Congestion Notification (ECN) and Round-Trip Time (RTT) to establish congestion awareness and an ECN marking model.… More >

  • Open Access

    ARTICLE

    Enhancing Solar Energy Production Forecasting Using Advanced Machine Learning and Deep Learning Techniques: A Comprehensive Study on the Impact of Meteorological Data

    Nataliya Shakhovska1,2,*, Mykola Medykovskyi1, Oleksandr Gurbych1,3, Mykhailo Mamchur1,3, Mykhailo Melnyk1

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 3147-3163, 2024, DOI:10.32604/cmc.2024.056542 - 18 November 2024

    Abstract The increasing adoption of solar photovoltaic systems necessitates accurate forecasting of solar energy production to enhance grid stability, reliability, and economic benefits. This study explores advanced machine learning (ML) and deep learning (DL) techniques for predicting solar energy generation, emphasizing the significant impact of meteorological data. A comprehensive dataset, encompassing detailed weather conditions and solar energy metrics, was collected and preprocessed to improve model accuracy. Various models were developed and trained with different preprocessing stages. Finally, three datasets were prepared. A novel hour-based prediction wrapper was introduced, utilizing external sunrise and sunset data to restrict… More >

Displaying 1-10 on page 1 of 1639. Per Page