Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    Optimal Design of Drying Process of the Potatoes with Multi-Agent Reinforced Deep Learning

    Mohammad Yaghoub Abdollahzadeh Jamalabadi*

    Frontiers in Heat and Mass Transfer, Vol.22, No.2, pp. 511-536, 2024, DOI:10.32604/fhmt.2024.051004 - 20 May 2024

    Abstract Heat and mass transport through evaporation or drying processes occur in many applications such as food processing, pharmaceutical products, solar-driven vapor generation, textile design, and electronic cigarettes. In this paper, the transport of water from a fresh potato considered as a wet porous media with laminar convective dry air fluid flow governed by Darcy’s law in two-dimensional is highlighted. Governing equations of mass conservation, momentum conservation, multiphase fluid flow in porous media, heat transfer, and transport of participating fluids and gases through evaporation from liquid to gaseous phase are solved simultaneously. In this model, the… More >

  • Open Access

    ARTICLE

    Numerical Simulation of a Two-Phase Flow with Low Permeability and a Start-Up Pressure Gradient

    Xuanyu Dong1,*, Jingyao Yang2

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.1, pp. 175-185, 2023, DOI:10.32604/fdmp.2022.021345 - 02 August 2022

    Abstract A new numerical model for low-permeability reservoirs is developed. The model incorporates the nonlinear characteristics of oil-water two-phase flows while taking into account the initiation pressure gradient. Related numerical solutions are obtained using a finite difference method. The correctness of the method is demonstrated using a two-dimensional inhomogeneous low permeability example. Then, the differences in the cumulative oil and water production are investigated for different starting water saturations. It is shown that when the initial water saturation grows, the water content of the block continues to rise and the cumulative oil production gradually decreases. More >

  • Open Access

    ARTICLE

    Nanofluid Flows Within Porous Enclosures Using Non-Linear Boussinesq Approximation

    Sameh E. Ahmed1,2,*, Dalal Alrowaili3, Ehab Mahmoud Mohamed4,5, Abdelraheem M. Aly1,2

    CMC-Computers, Materials & Continua, Vol.66, No.3, pp. 3195-3213, 2021, DOI:10.32604/cmc.2021.012471 - 28 December 2020

    Abstract In this paper, the Galerkin finite element method (FEM) together with the characteristic-based split (CBS) scheme are applied to study the case of the non-linear Boussinesq approximation within sinusoidal heating inclined enclosures filled with a non-Darcy porous media and nanofluids. The enclosure has an inclination angle and its side-walls have varying sinusoidal temperature distributions. The working fluid is a nanofluid that is consisting of water as a based nanofluid and Al2O3 as nanoparticles. The porous medium is modeled using the Brinkman Forchheimer extended Darcy model. The obtained results are analyzed over wide ranges of the non-linear… More >

  • Open Access

    ARTICLE

    INFLUENCE OF CRITICAL PARAMETERS OF THERMOPHOROSIS ON MHD NON-DARCY FLOW OF A CASSON FLUID PAST A PERMEABLE STRETCHING SHEET

    Kolli Vijayaa,* , G. Venkata Ramana Reddya

    Frontiers in Heat and Mass Transfer, Vol.14, pp. 1-8, 2020, DOI:10.5098/hmt.14.12

    Abstract Present investigation aims at analyzing the properties of heat and transport phenomena of thermal energy and species mass in a non-Darcy Casson fluid flow induced by a erected porous elongated surface considering the effect of non-linear radioactive heat, thermophorosis, first order chemical reaction, Newtonian heating, thermo diffusion, permeability and slip conditions. Influence of critical parameters are widely studied. By inducing the variables of similarity the basic boundary layer equations are transmuted into dimensionless equations and are resolved arithmetically using Runge – Kutta – Fehlberg shooting techniques method. The dominance of critical parameters against velocity, temperature, More >

  • Open Access

    ARTICLE

    Local RBF Collocation Method for Darcy Flow

    G. Kosec1, B. Šarler1

    CMES-Computer Modeling in Engineering & Sciences, Vol.25, No.3, pp. 197-208, 2008, DOI:10.3970/cmes.2008.025.197

    Abstract This paper explores the application of the mesh-free Local Radial Basis Function Collocation Method (LRBFCM) in solution of coupled heat transfer and fluid flow problems in Darcy porous media. The involved temperature, velocity and pressure fields are represented on overlapping sub-domains through collocation by using multiquadrics Radial Basis Functions (RBF). The involved first and second derivatives of the fields are calculated from the respective derivatives of the RBF's. The energy and momentum equations are solved through explicit time stepping. The pressure-velocity coupling is calculated iteratively, with pressure correction, predicted from the local continuity equation violation.… More >

Displaying 1-10 on page 1 of 5. Per Page