Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Damage Diagnosis of Bleacher Based on an Enhanced Convolutional Neural Network with Training Interference

    Chaozhi Cai*, Xiaoyu Guo, Yingfang Xue, Jianhua Ren

    Structural Durability & Health Monitoring, Vol.18, No.3, pp. 321-339, 2024, DOI:10.32604/sdhm.2024.045831 - 15 May 2024

    Abstract Bleachers play a crucial role in practical engineering applications, and any damage incurred during their operation poses a significant threat to the safety of both life and property. Consequently, it becomes imperative to conduct damage diagnosis and health monitoring of bleachers. The intricate structure of bleachers, the varied types of potential damage, and the presence of similar vibration data in adjacent locations make it challenging to achieve satisfactory diagnosis accuracy through traditional time-frequency analysis methods. Furthermore, field environmental noise can adversely impact the accuracy of bleacher damage diagnosis. To enhance the accuracy and anti-noise capabilities… More > Graphic Abstract

    Damage Diagnosis of Bleacher Based on an Enhanced Convolutional Neural Network with Training Interference

  • Open Access

    ABSTRACT

    Unsupervised Support Vector Machine Based Principal Component Analysis for Structural Health Monitoring

    Chang Kook Oh1, Hoon Sohn1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.8, No.3, pp. 91-100, 2008, DOI:10.3970/icces.2008.008.091

    Abstract Structural Health Monitoring (SHM) is concerned with identifying damage based on measurements obtained from structures being monitored. For the civil structures exposed to time-varying environmental and operational conditions, it is inevitable that environmental and operational variability produces an adverse effect on the dynamic behaviors of the structures. Since the signals are measured under the influence of these varying conditions, normalizing the data to distinguish the effects of damage from those caused by the environmental and operational variations is important in order to achieve successful structural health monitoring goals. In this paper, kernel principal component analysis More >

Displaying 1-10 on page 1 of 2. Per Page