Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access

    ARTICLE

    An Overview of Seismic Risk Management for Italian Architectural Heritage

    Lucio Nobile*

    Structural Durability & Health Monitoring, Vol.17, No.5, pp. 353-368, 2023, DOI:10.32604/sdhm.2023.028247 - 07 September 2023

    Abstract The frequent occurrence of seismic events in Italy poses a strategic problem that involves either the culture of preservation of historical heritage or the civil protection action aimed to reduce the risk to people and goods (buildings, bridges, dams, slopes, etc.). Most of the Italian architectural heritage is vulnerable to earthquakes, identifying the vulnerability as the inherent predisposition of the masonry building to suffer damage and collapse during an earthquake. In fact, the structural concept prevailing in these ancient masonry buildings is aimed at ensuring prevalent resistance to vertical gravity loads. Rarely do these ancient… More >

  • Open Access

    ARTICLE

    Structural Damage Identification Using Ensemble Deep Convolutional Neural Network Models

    Mohammad Sadegh Barkhordari1, Danial Jahed Armaghani2,*, Panagiotis G. Asteris3

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.2, pp. 835-855, 2023, DOI:10.32604/cmes.2022.020840 - 31 August 2022

    Abstract The existing strategy for evaluating the damage condition of structures mostly focuses on feedback supplied by traditional visual methods, which may result in an unreliable damage characterization due to inspector subjectivity or insufficient level of expertise. As a result, a robust, reliable, and repeatable method of damage identification is required. Ensemble learning algorithms for identifying structural damage are evaluated in this article, which use deep convolutional neural networks, including simple averaging, integrated stacking, separate stacking, and hybrid weighted averaging ensemble and differential evolution (WAE-DE) ensemble models. Damage identification is carried out on three types of More >

  • Open Access

    REVIEW

    Damage Assessment of Reinforced Concrete Structures through Damage Indices: A State-of-the-Art Review

    D. A. Makhloof, A. R. Ibrahim, Xiaodan Ren*

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.3, pp. 849-874, 2021, DOI:10.32604/cmes.2021.016882 - 11 August 2021

    Abstract Due to the developments of computer science and technology in recent years, computer models and numerical simulations for large and complicated structures can be done. Among the vast information and results obtained from the analysis and simulations, the damage performance is of great importance since this damage might cause enormous losses for society and humanity, notably in cases of severe damage occurring. One of the most effective tools to handle the results about the damage performance of the structure is the damage index (DI) together with the damage states, which are used to correlate the… More >

  • Open Access

    ABSTRACT

    Performance-Based Damage Assessment of Steel/RC Hybrid Structure

    Wei Huang1,*, Zhi Zhou2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.21, No.4, pp. 68-68, 2019, DOI:10.32604/icces.2019.05066

    Abstract Structural members of different materials in hybrid structures have different damage performances. Based on the classical Park-Ang damage model, a consistent modification of that model is proposed for structural members of different materials in order to determine the behavior and the damage process from member-level to structure-level. Furthermore, the specific limit values of this damage model at various performance levels are calculated. Obvious differences have been found between the limit values of different types of members. In order to unify the damage limits that correspond to predefined performance levels such that a comparison between different More >

  • Open Access

    ARTICLE

    Output-only System Identification and Damage Assessment through Iterative Model Updating Techniques

    Leandro Fleck Fadel Miguel1, Letícia Fleck Fadel Miguel2

    Structural Durability & Health Monitoring, Vol.8, No.3, pp. 249-270, 2012, DOI:10.32604/sdhm.2012.008.249

    Abstract Model updating may be defined as an adjustment on the FE model through modal parameters experimentally obtained, in order to better represent its dynamic behavior. From this definition, structural health monitoring (SHM) methods can be considered closely related with these procedures, because it refers to the implementation of in situ non-destructive sensing and analysis of the dynamic system characteristics, which aims to detect changes that could indicate damage. Within this context, the present paper evaluates an iterative model updating approach when it is subjected to experimental vibration data. In addition, after getting the experimental adjusted… More >

  • Open Access

    ARTICLE

    Damage Assessment in Pultruded GFRP with AE

    D. Crivelli1, M. Guagliano2, A. Monici3

    Structural Durability & Health Monitoring, Vol.8, No.2, pp. 177-192, 2012, DOI:10.3970/sdhm.2012.008.177

    Abstract Pultrusion is a process for manufacturing uniform section composite profiles, which allows to obtain structural elements of virtually any length. The use of E-glass fiber allows to obtain a material with a good rigidity-to-weight and strength-to-weight ratio; these features allowed to use these materials in civil structures, such as poles for anti-noise panels and public lighting, also thanks to their insulating properties. However, the knowledge on the damage development of these materials is still uncertain, and this is slowing down their development.
    For these reasons, an experimental study on pultruded materials aimed at identifying the damage… More >

  • Open Access

    ARTICLE

    Damage Assessment Based on the Frequencies' Ratio Surfaces Intersection Method for the Identification of the Crack Depth, Location and Orientation

    Jean-Jacques Sinou1

    Structural Durability & Health Monitoring, Vol.3, No.3, pp. 133-164, 2007, DOI:10.3970/sdhm.2007.003.133

    Abstract This paper aims to establish a damage identification methodology, called the Frequencies' Ratio Surfaces Intersection method (FRSI-method), for predicting not only the location and depth of the crack but also the crack orientation in a circular cross section beam. Two new criterions %Δicracked and %ψi,jcracked that consider only the ratio of the natural frequencies of the cracked beam are introduced and discussed in order to detect the crack parameters. In order to avoid worse diagnostic, it is demonstrated that a robust identification of crack location is possible by investigating the emergence of extra antiresonance peaks… More >

Displaying 1-10 on page 1 of 7. Per Page