Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (36)
  • Open Access

    VIEWPOINT

    Poly(ADP-ribose), adherens junctions, vinculin and the actin cytoskeleton: Current evidence, future perspectives and implications

    LAURA LAFON-HUGHES1,2,*

    BIOCELL, Vol.46, No.12, pp. 2531-2535, 2022, DOI:10.32604/biocell.2022.022713

    Abstract Poly(ADP-ribose) (PAR) is a highly negatively charged polymer. PAR is synthesized by poly(ADP-ribose)polymerases (PARPs) and is involved in the assembly and stabilization of macromolecular complexes. Here, the presence and putative roles of poly(ADP-ribosyl)ation (PARylation) associated to adherens junctions (AJ) and the actin cytoskeleton in epithelial and Schwann cells, is reviewed. The hypothesis generated by analogy, stating that PAR is associated to AJ in other cell types, is postulated. According to this hypothesis, PAR associated to puncta adherentia in chemical synapses would participate in plasticity, learning and memory. In turn, PAR associated to fascia adherens in cardiomyocytes, would affect heart beating.… More >

  • Open Access

    VIEWPOINT

    The RhoA nuclear localization changes in replicative senescence: New evidence from in vitro human mesenchymal stem cells studies

    DANILA BOBKOV1,2,3,*, ANASTASIA POLYANSKAYA1, ANASTASIA MUSORINA1, GALINA POLJANSKAYA1

    BIOCELL, Vol.46, No.9, pp. 2053-2058, 2022, DOI:10.32604/biocell.2022.019469

    Abstract All non-immortalized mesenchymal stem cells have a limited proliferative potential, that is, replicative senescence (RS) is an integral characteristic of the life of all mesenchymal stem cells (MSCs). It is known that one of the important signs of RS is a decrease of cell motility, and that violations of migration processes contribute to the deterioration of tissue regeneration. Therefore, the characterization of the properties of the cell line associated with RS is a prerequisite for the effective use of MSCs in restorative medicine. One of the key proteins regulating cell motility is the small GTPase RhoA. The main purpose of… More >

  • Open Access

    VIEWPOINT

    Mechanobiology of the cell surface: Probing its remodeling dynamics using membrane tether pulling assays with optical tweezers

    JULIANA SOARES1,2,#, DOUGLAS G. FREITAS1,3,#, PEDRO S. LOURENÇO1,4, JEFTE FARIAS1,5, BRUNO PONTES1,2,3,4,5,*

    BIOCELL, Vol.46, No.9, pp. 2009-2013, 2022, DOI:10.32604/biocell.2022.019969

    Abstract Mammalian cell surfaces consist of the plasma membrane supported by an underneath cortical cytoskeleton. Together, these structures can control not only the shape of cells but also a series of cellular functions ranging from migration and division to exocytosis, endocytosis and differentiation. Furthermore, the cell surface is capable of exerting and reacting to mechanical forces. Its viscoelastic properties, especially membrane tension and bending modulus, are fundamental parameters involved in these responses. This viewpoint summarizes our current knowledge on how to measure the viscoelastic properties of cell surfaces employing optical tweezers-based tether assays, paving the way for a better understanding of… More >

  • Open Access

    REVIEW

    Microenvironment promotes cytoskeleton remodeling and adaptive phenotypic transition

    MARIANO BIZZARRI*, PAOLA PONTECORVI

    BIOCELL, Vol.46, No.6, pp. 1357-1362, 2022, DOI:10.32604/biocell.2022.018471

    Abstract The cytoskeleton includes three main classes of networked filaments behaving as a coherent and complex structure that confers stability to cell shape while serving as sensor of internal/extracellular changes. Microenvironmental stimuli interfere with the non-linear dynamics that govern cytoskeleton architecture, namely by fostering symmetry breakings and transitions across different phenotypic states. Such process induces a wholecoherent adaptive response, involving the reprogramming of biochemical and gene-expression patterns. These characteristics are especially relevant during development, and in those conditions in which a deregulated crosstalk between cells and the stroma is at the core of the pathological process. Therefore, studying how the cytoskeleton… More >

  • Open Access

    VIEWPOINT

    ISG15 and ISGylation: Emergence in the cytoskeleton dynamic and tumor microenvironment

    ANGELES C. TECALCO-CRUZ*

    BIOCELL, Vol.46, No.5, pp. 1209-1213, 2022, DOI:10.32604/biocell.2022.018136

    Abstract Cytoskeletal remodeling affects the shape, adhesion, and motility of cells. Cytoskeletal dynamics are modulated by matrix proteins, integrins, and several cytokines in the tumor microenvironment. In this scenario, signaling is activated by integrins and interferons, which can induce ISG15 gene expression. This gene encodes a ubiquitin-like protein that functions as a protein modifier via the ISGylation system. Furthermore, non-conjugated ISG15 acts as a cytokine-like protein. In this viewpoint, the interplay between free ISG15, protein ISGylation, and cytoskeletal dynamics in the tumor microenvironment is discussed. More >

  • Open Access

    ARTICLE

    Cell adhesion in renal tubular epithelial cells: Biochemistry, biophysics or both

    CLAIRE ELIZABETH HILLS, ELEFTHERIOS SIAMANTOURAS, PAUL EDWARD SQUIRES*

    BIOCELL, Vol.46, No.4, pp. 937-940, 2022, DOI:10.32604/biocell.2022.018414

    Abstract Changes in cell-cell and cell-substrate adhesion markers are increasingly used to characterize disease onset and progression. However, these relationships depend on both the biochemical and molecular association between cells and between cells and their extracellular matrix, as well as the biophysical and mechanical properties orchestrated by cytoskeletal, membrane and matrix components. To fully appreciate the role of cell adhesion when determining normal physiology and the impact of disease on cellular function, it is important to consider both biochemical and biophysical attributes of the system being investigated. In this short viewpoint we reflect on our experiences assessing cell-cell and/or cell-matrix interactions… More >

  • Open Access

    REVIEW

    Impact of chitosan-based nanocarriers on cytoskeleton dynamics: Current status and challenges

    M. CAROLINA DI SANTO1,2,#, AGUSTINA ALAIMO1,2,#, ANA PAULA DOMÍNGUEZ RUBIO1,2, OSCAR E. PÉREZ1,2,*

    BIOCELL, Vol.46, No.4, pp. 885-891, 2022, DOI:10.32604/biocell.2022.018391

    Abstract Chitosan-based nanocarriers (CS-NCs) show a promising role in improving drugs and bioactive compounds delivery for therapy. However, the effects exerted by CS-NCs at the cellular level, including their recognition and uptake, have not been fully investigated yet. Many factors, including size, shape, concentration, and surface chemistry of CS-NCs, play an important role in determining the types of intracellular signals triggered. The mechanism of uptake and the involvement of the cytoskeleton during the CS-NCs endocytosis variates among the different cell types as well as further effects observed inside cells. In the present work, we discuss the effects induced by CS-NCs per… More >

  • Open Access

    REVIEW

    Study of cytoskeleton from microscopic point of view: Our experience

    CINZIA SIGNORINI*, GIULIA COLLODEL, ELENA MORETTI

    BIOCELL, Vol.46, No.4, pp. 881-884, 2022, DOI:10.32604/biocell.2022.018062

    Abstract The manuscript deals with our studies and experiences in the assessment of cytoskeleton in different cellular models and situations. The immunofluorescent study of several cytoskeletal proteins was relevant in the evaluation of a therapy for osteoarthritis, in case of alkaptonuria and in testing the efficacy of docetaxel in neuroblastoma cancer cells leading to apoptosis. A relevant part of our experience focus on the study of cytoskeleton in seminiferous epithelium and spermatozoa, identifying alterations affecting blood-testis barrier after a silver nanoparticle treatment, chromosomal segregation in case of varicocele, sperm motility and diagnosing systematic sperm defects as “Primary ciliary dyskinesia” and “Dysplasia… More >

  • Open Access

    VIEWPOINT

    New evidence for a role of Bisphenol A in cell integrity. Implications in the human population

    RAFAEL MORENO-GÓMEZ-TOLEDANO1,*, MARíA I. ARENAS2, ESPERANZA VÉLEZ-VÉLEZ3, RICARDO J. BOSCH1

    BIOCELL, Vol.46, No.2, pp. 305-308, 2022, DOI:10.32604/biocell.2022.017894

    Abstract Bisphenol A (BPA) is a xenoestrogen known for its implications for the endocrine systems and several other organs, including the kidneys. Recent renal studies have shown that BPA can induce alterations of the cytoskeleton and cell adhesion mechanisms such as a podocytopathy with proteinuria and hypertension, alterations involved in the progression of renal diseases. These data and the fact that BPA is known to be present in the urine of almost the entire population strongly suggest the critical need to reevaluate BPA exposures considered safe. More >

  • Open Access

    REVIEW

    The roles of focal adhesion and cytoskeleton systems in fluid shear stress-induced endothelial cell response

    KHAWAR ALI SHAHZAD1,2,#, ZHONGJIE QIN3,4,#, YAN LI1,2,*, DELIN XIA3,4,*

    BIOCELL, Vol.44, No.2, pp. 137-145, 2020, DOI:10.32604/biocell.2020.08500

    Abstract Focal adhesions are polyproteins linked to extracellular matrix and cytoskeleton, which play an important role in the process of transforming force signals into intracellular chemical signals and subsequently triggering related physiological or pathological reactions. The cytoskeleton is a network of protein fibers in the cytoplasm, which is composed of microfilaments, microtubules, intermediate filaments, and cross-linked proteins. It is a very important structure for cells to maintain their basic morphology. This review summarizes the process of fluid shear stress transduction mediated by focal adhesion and the key role of the cytoskeleton in this process, which focuses on the focal adhesion and… More >

Displaying 1-10 on page 1 of 36. Per Page