Amani Abdulrahman Albraikan1, Siwar Ben Haj Hassine2, Suliman Mohamed Fati3, Fahd N. Al-Wesabi2,4, Anwer Mustafa Hilal5,*, Abdelwahed Motwakel5, Manar Ahmed Hamza5, Mesfer Al Duhayyim6
CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 907-923, 2022, DOI:10.32604/cmc.2022.024488
- 24 February 2022
Abstract Cyberbullying (CB) is a distressing online behavior that disturbs mental health significantly. Earlier studies have employed statistical and Machine Learning (ML) techniques for CB detection. With this motivation, the current paper presents an Optimal Deep Learning-based Cyberbullying Detection and Classification (ODL-CDC) technique for CB detection in social networks. The proposed ODL-CDC technique involves different processes such as pre-processing, prediction, and hyperparameter optimization. In addition, GloVe approach is employed in the generation of word embedding. Besides, the pre-processed data is fed into Bidirectional Gated Recurrent Neural Network (BiGRNN) model for prediction. Moreover, hyperparameter tuning of BiGRNN More >