Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (9)
  • Open Access

    ARTICLE

    Enhanced Steganalysis for Color Images Using Curvelet Features and Support Vector Machine

    Arslan Akram1,2, Imran Khan1, Javed Rashid2,3, Mubbashar Saddique4,*, Muhammad Idrees4, Yazeed Yasin Ghadi5, Abdulmohsen Algarni6

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 1311-1328, 2024, DOI:10.32604/cmc.2023.040512 - 30 January 2024

    Abstract Algorithms for steganography are methods of hiding data transfers in media files. Several machine learning architectures have been presented recently to improve stego image identification performance by using spatial information, and these methods have made it feasible to handle a wide range of problems associated with image analysis. Images with little information or low payload are used by information embedding methods, but the goal of all contemporary research is to employ high-payload images for classification. To address the need for both low- and high-payload images, this work provides a machine-learning approach to steganography image classification… More >

  • Open Access

    PROCEEDINGS

    A Directional Fast Algorithm for Oscillatory Kernels with Curvelet-Like Functions

    Yanchuang Cao1, Jun Liu1, Dawei Chen1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.09272

    Abstract Interactions of multiple points with oscillatory kernels are widely encountered in wave analysis. For large scale problems, its direct evaluation is prohibitive since the computational cost increases quadratically with the number of points.
    Various fast algorithms have been constructed by exploiting specific properties of the kernel function. Early fast algorithms, such as the fast multipole method (FMM) and its variants, H2-matrix, adaptive cross approximation (ACA), wavelet-based method, etc., are generally developed for kernels that are asymptotically smooth when source points and target points are well separated. For oscillatory kernels, however, the asymptotic smoothness criteria is only… More >

  • Open Access

    ARTICLE

    Super-Resolution Based on Curvelet Transform and Sparse Representation

    Israa Ismail1,*, Mohamed Meselhy Eltoukhy1,2, Ghada Eltaweel1

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 167-181, 2023, DOI:10.32604/csse.2023.028906 - 16 August 2022

    Abstract Super-resolution techniques are used to reconstruct an image with a high resolution from one or more low-resolution image(s). In this paper, we proposed a single image super-resolution algorithm. It uses the nonlocal mean filter as a prior step to produce a denoised image. The proposed algorithm is based on curvelet transform. It converts the denoised image into low and high frequencies (sub-bands). Then we applied a multi-dimensional interpolation called Lancozos interpolation over both sub-bands. In parallel, we applied sparse representation with over complete dictionary for the denoised image. The proposed algorithm then combines the dictionary More >

  • Open Access

    ARTICLE

    An Optimised Defensive Technique to Recognize Adversarial Iris Images Using Curvelet Transform

    K. Meenakshi1,*, G. Maragatham2

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 627-643, 2023, DOI:10.32604/iasc.2023.026961 - 06 June 2022

    Abstract Deep Learning is one of the most popular computer science techniques, with applications in natural language processing, image processing, pattern identification, and various other fields. Despite the success of these deep learning algorithms in multiple scenarios, such as spam detection, malware detection, object detection and tracking, face recognition, and automatic driving, these algorithms and their associated training data are rather vulnerable to numerous security threats. These threats ultimately result in significant performance degradation. Moreover, the supervised based learning models are affected by manipulated data known as adversarial examples, which are images with a particular level… More >

  • Open Access

    ARTICLE

    Unconstrained Hand Dorsal Veins Image Database and Recognition System

    Mustafa M. Al Rifaee1,*, Mohammad M. Abdallah1, Mosa I. Salah2, Ayman M. Abdalla1

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 5063-5073, 2022, DOI:10.32604/cmc.2022.030033 - 28 July 2022

    Abstract Hand veins can be used effectively in biometric recognition since they are internal organs that, in contrast to fingerprints, are robust under external environment effects such as dirt and paper cuts. Moreover, they form a complex rich shape that is unique, even in identical twins, and allows a high degree of freedom. However, most currently employed hand-based biometric systems rely on hand-touch devices to capture images with the desired quality. Since the start of the COVID-19 pandemic, most hand-based biometric systems have become undesirable due to their possible impact on the spread of the pandemic.… More >

  • Open Access

    ARTICLE

    Convolutional Neural Networks Based Video Reconstruction and Computation in Digital Twins

    M. Kavitha1, B. Sankara Babu2, B. Sumathy3, T. Jackulin4, N. Ramkumar5, A. Manimaran6, Ranjan Walia7, S. Neelakandan8,*

    Intelligent Automation & Soft Computing, Vol.34, No.3, pp. 1571-1586, 2022, DOI:10.32604/iasc.2022.026385 - 25 May 2022

    Abstract With the advancement of communication and computing technologies, multimedia technologies involving video and image applications have become an important part of the information society and have become inextricably linked to people's daily productivity and lives. Simultaneously, there is a growing interest in super-resolution (SR) video reconstruction techniques. At the moment, the design of digital twins in video computing and video reconstruction is based on a number of difficult issues. Although there are several SR reconstruction techniques available in the literature, most of the works have not considered the spatio-temporal relationship between the video frames. With… More >

  • Open Access

    ARTICLE

    Fast and Accurate Thoracic SPECT Image Reconstruction

    Afef Houimli1,*, IssamBen Mhamed2, Bechir Letaief1,3,4, Dorra Ben-Sellem1,3,4

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.2, pp. 881-904, 2022, DOI:10.32604/cmes.2022.016705 - 14 March 2022

    Abstract In Single-Photon Emission Computed Tomography (SPECT), the reconstructed image has insufficient contrast, poor resolution and inaccurate volume of the tumor size due to physical degradation factors. Generally, nonstationary filtering of the projection or the slice is one of the strategies for correcting the resolution and therefore improving the quality of the reconstructed SPECT images. This paper presents a new 3D algorithm that enhances the quality of reconstructed thoracic SPECT images and reduces the noise level with the best degree of accuracy. The suggested algorithm is composed of three steps. The first one consists of denoising… More >

  • Open Access

    ARTICLE

    Curvelet Transform Based on Edge Preserving Filter for Retinal Blood Vessel Segmentation

    Sonali Dash1, Sahil Verma2,*, Kavita2, N. Z. Jhanjhi3, Mehedi Masud4, Mohammed Baz5

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 2459-2476, 2022, DOI:10.32604/cmc.2022.020904 - 07 December 2021

    Abstract Segmentation of vessel in retinal fundus images is a primary step for the clinical identification for specific eye diseases. Effective diagnosis of vascular pathologies from angiographic images is thus a vital aspect and generally depends on segmentation of vascular structure. Although various approaches for retinal vessel segmentation are extensively utilized, however, the responses are lower at vessel's edges. The curvelet transform signifies edges better than wavelets, and hence convenient for multiscale edge enhancement. The bilateral filter is a nonlinear filter that is capable of providing effective smoothing while preserving strong edges. Fast bilateral filter is… More >

  • Open Access

    ARTICLE

    A Hybrid Artificial Intelligence Model for Skin Cancer Diagnosis

    V. Vidya Lakshmi1,*, J. S. Leena Jasmine2

    Computer Systems Science and Engineering, Vol.37, No.2, pp. 233-245, 2021, DOI:10.32604/csse.2021.015700 - 01 March 2021

    Abstract Melanoma or skin cancer is the most dangerous and deadliest disease. As the incidence and mortality rate of skin cancer increases worldwide, an automated skin cancer detection/classification system is required for early detection and prevention of skin cancer. In this study, a Hybrid Artificial Intelligence Model (HAIM) is designed for skin cancer classification. It uses diverse multi-directional representation systems for feature extraction and an efficient Exponentially Weighted and Heaped Multi-Layer Perceptron (EWHMLP) for the classification. Though the wavelet transform is a powerful tool for signal and image processing, it is unable to detect the intermediate More >

Displaying 1-10 on page 1 of 9. Per Page