Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Aerodynamic Features of High-Speed Maglev Trains with Different Marshaling Lengths Running on a Viaduct under Crosswinds

    Zun-Di Huang1, Zhen-Bin Zhou1,2,3, Ning Chang1, Zheng-Wei Chen2,3,*, Su-Mei Wang2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 975-996, 2024, DOI:10.32604/cmes.2024.047664 - 16 April 2024

    Abstract The safety and stability of high-speed maglev trains traveling on viaducts in crosswinds critically depend on their aerodynamic characteristics. Therefore, this paper uses an improved delayed detached eddy simulation (IDDES) method to investigate the aerodynamic features of high-speed maglev trains with different marshaling lengths under crosswinds. The effects of marshaling lengths (varying from 3-car to 8-car groups) on the train’s aerodynamic performance, surface pressure, and the flow field surrounding the train were investigated using the three-dimensional unsteady compressible Navier-Stokes (N-S) equations. The results showed that the marshaling lengths had minimal influence on the aerodynamic performance… More > Graphic Abstract

    Aerodynamic Features of High-Speed Maglev Trains with Different Marshaling Lengths Running on a Viaduct under Crosswinds

  • Open Access

    ARTICLE

    A Numerical Study of the Aerodynamic Characteristics of a High-Speed Train under the Effect of Crosswind and Rain

    Haiqing Li1, Mengge Yu1, *, Qian Zhang1, Heng Wen1

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.1, pp. 77-90, 2020, DOI:10.32604/fdmp.2020.07797 - 01 February 2020

    Abstract The performances of high-speed trains in the presence of coupling effects with crosswind and rain have attracted great attention in recent years. The objective of the present paper was to investigate the aerodynamic characteristics of a high-speed train under such conditions in the framework of an Eulerian-Lagrangian approach. An aerodynamic model of a high-speed train was first set up, and the side force coefficient obtained from numerical simulation was compared with that provided by wind tunnel experiments to verify the accuracy of the approach. Then, the effects of the yaw angle, the resultant wind speed, More >

  • Open Access

    ARTICLE

    Effect of RANS Model on the Aerodynamic Characteristics of a Train in Crosswinds Using DDES

    Tian Li1, *, Zhiyuan Dai1, Weihua Zhang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.122, No.2, pp. 555-570, 2020, DOI:10.32604/cmes.2020.08101 - 01 February 2020

    Abstract Detached eddy simulation has been widely applied to simulate the flow around trains in recent years. The Reynolds-averaged Navier-Stokes (RANS) model for delayed detached eddy simulation (DDES) is an essential user input. The effect of the RANS model for DDES on the aerodynamic characteristics of a train in crosswinds is investigated in this study. Three different DDES models are used, based on the Spalart-Allmaras model (SA), the realizable k-ε model (RKE), and the shear stress transport k-ω model (SST). Results show that all DDES models can give relatively accurate predictions of pressure coefficient on almost all More >

Displaying 1-10 on page 1 of 3. Per Page