Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    HCRVD: A Vulnerability Detection System Based on CST-PDG Hierarchical Code Representation Learning

    Zhihui Song, Jinchen Xu, Kewei Li, Zheng Shan*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4573-4601, 2024, DOI:10.32604/cmc.2024.049310 - 20 June 2024

    Abstract Prior studies have demonstrated that deep learning-based approaches can enhance the performance of source code vulnerability detection by training neural networks to learn vulnerability patterns in code representations. However, due to limitations in code representation and neural network design, the validity and practicality of the model still need to be improved. Additionally, due to differences in programming languages, most methods lack cross-language detection generality. To address these issues, in this paper, we analyze the shortcomings of previous code representations and neural networks. We propose a novel hierarchical code representation that combines Concrete Syntax Trees (CST)… More >

  • Open Access

    ARTICLE

    Enhancing Cross-Lingual Image Description: A Multimodal Approach for Semantic Relevance and Stylistic Alignment

    Emran Al-Buraihy, Dan Wang*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 3913-3938, 2024, DOI:10.32604/cmc.2024.048104 - 20 June 2024

    Abstract Cross-lingual image description, the task of generating image captions in a target language from images and descriptions in a source language, is addressed in this study through a novel approach that combines neural network models and semantic matching techniques. Experiments conducted on the Flickr8k and AraImg2k benchmark datasets, featuring images and descriptions in English and Arabic, showcase remarkable performance improvements over state-of-the-art methods. Our model, equipped with the Image & Cross-Language Semantic Matching module and the Target Language Domain Evaluation module, significantly enhances the semantic relevance of generated image descriptions. For English-to-Arabic and Arabic-to-English cross-language… More >

  • Open Access

    ARTICLE

    An Efficient Long Short-Term Memory Model for Digital Cross-Language Summarization

    Y. C. A. Padmanabha Reddy1, Shyam Sunder Reddy Kasireddy2, Nageswara Rao Sirisala3, Ramu Kuchipudi4, Purnachand Kollapudi5,*

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6389-6409, 2023, DOI:10.32604/cmc.2023.034072 - 28 December 2022

    Abstract The rise of social networking enables the development of multilingual Internet-accessible digital documents in several languages. The digital document needs to be evaluated physically through the Cross-Language Text Summarization (CLTS) involved in the disparate and generation of the source documents. Cross-language document processing is involved in the generation of documents from disparate language sources toward targeted documents. The digital documents need to be processed with the contextual semantic data with the decoding scheme. This paper presented a multilingual cross-language processing of the documents with the abstractive and summarising of the documents. The proposed model is More >

  • Open Access

    ARTICLE

    Cross-Language Transfer Learning-based Lhasa-Tibetan Speech Recognition

    Zhijie Wang1, Yue Zhao1,*, Licheng Wu1, Xiaojun Bi1, Zhuoma Dawa2, Qiang Ji3

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 629-639, 2022, DOI:10.32604/cmc.2022.027092 - 18 May 2022

    Abstract As one of Chinese minority languages, Tibetan speech recognition technology was not researched upon as extensively as Chinese and English were until recently. This, along with the relatively small Tibetan corpus, has resulted in an unsatisfying performance of Tibetan speech recognition based on an end-to-end model. This paper aims to achieve an accurate Tibetan speech recognition using a small amount of Tibetan training data. We demonstrate effective methods of Tibetan end-to-end speech recognition via cross-language transfer learning from three aspects: modeling unit selection, transfer learning method, and source language selection. Experimental results show that the More >

  • Open Access

    ARTICLE

    Improve Representation for Cross-Language Clone Detection by Pretrain Using Tree Autoencoder

    Huading Ling1, Aiping Zhang1, Changchun Yin1, Dafang Li2,*, Mengyu Chang3

    Intelligent Automation & Soft Computing, Vol.33, No.3, pp. 1561-1577, 2022, DOI:10.32604/iasc.2022.027349 - 24 March 2022

    Abstract With the rise of deep learning in recent years, many code clone detection (CCD) methods use deep learning techniques and achieve promising results, so is cross-language CCD. However, deep learning techniques require a dataset to train the models. The dataset is typically small and has a gap between real-world clones due to the difficulty of collecting datasets for cross-language CCD. This creates a data bottleneck problem: data scale and quality issues will cause that model with a better design can still not reach its full potential. To mitigate this, we propose a tree autoencoder (TAE)… More >

Displaying 1-10 on page 1 of 5. Per Page