Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Guided-YNet: Saliency Feature-Guided Interactive Feature Enhancement Lung Tumor Segmentation Network

    Tao Zhou1,3, Yunfeng Pan1,3,*, Huiling Lu2, Pei Dang1,3, Yujie Guo1,3, Yaxing Wang1,3

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4813-4832, 2024, DOI:10.32604/cmc.2024.054685 - 12 September 2024

    Abstract Multimodal lung tumor medical images can provide anatomical and functional information for the same lesion. Such as Positron Emission Computed Tomography (PET), Computed Tomography (CT), and PET-CT. How to utilize the lesion anatomical and functional information effectively and improve the network segmentation performance are key questions. To solve the problem, the Saliency Feature-Guided Interactive Feature Enhancement Lung Tumor Segmentation Network (Guide-YNet) is proposed in this paper. Firstly, a double-encoder single-decoder U-Net is used as the backbone in this model, a single-coder single-decoder U-Net is used to generate the saliency guided feature using PET image and… More >

Displaying 1-10 on page 1 of 1. Per Page