Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Modified Anam-Net Based Lightweight Deep Learning Model for Retinal Vessel Segmentation

    Syed Irtaza Haider1, Khursheed Aurangzeb2,*, Musaed Alhussein2

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 1501-1526, 2022, DOI:10.32604/cmc.2022.025479 - 18 May 2022

    Abstract The accurate segmentation of retinal vessels is a challenging task due to the presence of various pathologies as well as the low-contrast of thin vessels and non-uniform illumination. In recent years, encoder-decoder networks have achieved outstanding performance in retinal vessel segmentation at the cost of high computational complexity. To address the aforementioned challenges and to reduce the computational complexity, we propose a lightweight convolutional neural network (CNN)-based encoder-decoder deep learning model for accurate retinal vessels segmentation. The proposed deep learning model consists of encoder-decoder architecture along with bottleneck layers that consist of depth-wise squeezing, followed… More >

Displaying 1-10 on page 1 of 1. Per Page