Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (19)
  • Open Access

    ARTICLE

    Oscillatory Dynamics of a Spherical Solid in a Liquid in an Axisymmetric Variable Cross Section Channel

    Ivan Karpunin*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.6, pp. 1219-1232, 2024, DOI:10.32604/fdmp.2024.051062

    Abstract The dynamics of a solid spherical body in an oscillating liquid flow in a vertical axisymmetric channel of variable cross section is experimentally studied. It is shown that the oscillating liquid leads to the generation of intense averaged flows in each of the channel segments. The intensity and direction of these flows depend on the dimensionless oscillating frequency. In the region of studied frequencies, the dynamics of the considered body is examined when the primary vortices emerging in the flow occupy the whole region in each segment. For a fixed frequency, an increase in the… More >

  • Open Access

    ARTICLE

    Sensitivity Analysis of Electromagnetic Scattering from Dielectric Targets with Polynomial Chaos Expansion and Method of Moments

    Yujing Ma1,4, Zhongwang Wang2, Jieyuan Zhang3, Ruijin Huo1,4, Xiaohui Yuan1,4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 2079-2102, 2024, DOI:10.32604/cmes.2024.048488

    Abstract In this paper, an adaptive polynomial chaos expansion method (PCE) based on the method of moments (MoM) is proposed to construct surrogate models for electromagnetic scattering and further sensitivity analysis. The MoM is applied to accurately solve the electric field integral equation (EFIE) of electromagnetic scattering from homogeneous dielectric targets. Within the bistatic radar cross section (RCS) as the research object, the adaptive PCE algorithm is devoted to selecting the appropriate order to construct the multivariate surrogate model. The corresponding sensitivity results are given by the further derivative operation, which is compared with those of More >

  • Open Access

    ARTICLE

    Experimental and Numerical Investigation of the Performance of Turbulent Heat Transfer in Tubes with Different Cross-Sectioned Wire Coils

    Ali Shokor Golam*

    Frontiers in Heat and Mass Transfer, Vol.22, No.2, pp. 633-653, 2024, DOI:10.32604/fhmt.2024.050218

    Abstract The thermal-hydraulic performance of plain tubes with and without wire coils in turbulent regimes is investigated experimentally and numerically. The effects of wire coil distribution (circular cross section) within the tube were explored experimentally, and water was employed as the working fluid. The numerical simulation was carried out using software programmer ANSYS Fluent 2019 R3 using the finite-volume approach. In the turbulent regime, six cross-sectioned wire coils were analyzed, including: circular, rectangular, hexagonal, square, star shape, and triangle. The utilization of a tube with a wire coil has been shown to increase heat transfer rate More >

  • Open Access

    ARTICLE

    Buckling Optimization of Curved Grid Stiffeners through the Level Set Based Density Method

    Zhuo Huang, Ye Tian, Yifan Zhang, Tielin Shi, Qi Xia*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 711-733, 2024, DOI:10.32604/cmes.2024.045411

    Abstract Stiffened structures have great potential for improving mechanical performance, and the study of their stability is of great interest. In this paper, the optimization of the critical buckling load factor for curved grid stiffeners is solved by using the level set based density method, where the shape and cross section (including thickness and width) of the stiffeners can be optimized simultaneously. The grid stiffeners are a combination of many single stiffeners which are projected by the corresponding level set functions. The thickness and width of each stiffener are designed to be independent variables in the More >

  • Open Access

    ARTICLE

    Impacts of Rotation on Unsteady Fluid Flow and Energy Distribution through a Bending Duct with Rectangular Cross Section

    Mohammad Zohurul Islam1, Rabindra Nath Mondal2, Suvash C. Saha1,*

    Energy Engineering, Vol.119, No.2, pp. 453-472, 2022, DOI:10.32604/ee.2022.018160

    Abstract

    A depth understanding of fluid flow past a curved duct having rectangular cross-section with different aspect ratios (l) are essential for various engineering applications such as in chemical, mechanical, bio-mechanical and bio-medical engineering. So highly ambitious researchers have given significant attention to study new characteristics of fluid flow in a curved duct. The flow characterization in the rectangular duct has been studied over a wide range of numerical and selective experimental studies. However, proper knowledge with the effects of Coriolis force for different aspect ratios is important for better understanding of the transitional behaviour and

    More >

  • Open Access

    ARTICLE

    Drag Reduction Characteristics of Microstructure Inspired by the Cross Section of Barchan Dunes under High Speed Flow Condition

    Jiawei Jiang, Yizhou Shen*, Jie Tao*, Zhenfeng Jia, Xinyu Xie, Chaojiao Zeng

    Journal of Renewable Materials, Vol.10, No.3, pp. 781-797, 2022, DOI:10.32604/jrm.2022.017230

    Abstract A new type of microstructure inspired by the cross section of barchan dunes was proposed to reduce windage, which was considered as a passive drag reduction technology in aerospace manufacturing field. Computational fluid dynamics method was carried out to discuss the effect of the microstructure on the skin friction reduction under high velocity flow condition. Different microstructure heights were employed to survey the reduction of drag. The results illustrated that the appearance of microstructure led to a generation of pressure drag in non-smooth model (with microstructures inspired by cross section of barchan dune) in contrast… More > Graphic Abstract

    Drag Reduction Characteristics of Microstructure Inspired by the Cross Section of Barchan Dunes under High Speed Flow Condition

  • Open Access

    ARTICLE

    Identifying Cross Section Technology Application through Chinese Patent Analysis

    Ping-Yu Hsu1, Ming-Shien Cheng2,*, Chih-Hao Wen3, Yen-Huei Ko1

    Intelligent Automation & Soft Computing, Vol.27, No.1, pp. 269-285, 2021, DOI:10.32604/iasc.2021.013404

    Abstract Cross-domain technology application is the application of technology from one field to another to create a wide range of application opportunities. To successfully identify emerging technological application cross sections of patent documents is vital to the competitive advantage of companies, and even nations. An automatic process is needed to save precious resources of human experts and exploit huge numbers of patent documents. Chinese patent documents are the source data of our experiment. In this study, an identification algorithm was developed on the basis of a cross-collection mixture model to identify cross section and emerging technology… More >

  • Open Access

    ABSTRACT

    Kinematic Analysis of Lumbar Spine Undergoing Extension and Dynamic Neural Foramina Cross Section Measurement

    Yongjie Zhang1, Boyle C. Cheng2, Changho Oh1, Jessica L. Spehar2, James Burgess3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.7, No.2, pp. 57-62, 2008, DOI:10.3970/icces.2008.007.057

    Abstract The spinal column plays a vital biomechanical role in the human body by providing structural support and facilitating motion. As degenerative changes occur in the spine, however, chronic pain can result which frequently forces patient to seek surgical treatment. Such treatments seek to address that pain, frequently by addressing both spinal motion and structural integrity. More >

  • Open Access

    ARTICLE

    Method of Fundamental Solutions for Scattering Problems of Electromagnetic Waves

    D.L. Young1,2, J.W. Ruan2

    CMES-Computer Modeling in Engineering & Sciences, Vol.7, No.2, pp. 223-232, 2005, DOI:10.3970/cmes.2005.007.223

    Abstract The applications of the method of fundamental solutions (MFS) for modeling the scattering of time-harmonic electromagnetic fields, which are governed by vector Helmholtz equations with coupled boundary conditions, are described. Various perfectly electric conductors are considered as the scatterers to investigate the accuracy of the numerical performance of the proposed procedure by comparing with the available analytical solutions. It is also the intention of this study to reveal the characteristics of the algorithms by comparisons with other numerical methods. The model is first validated to the exact solutions of the electromagnetic wave propagation problems for More >

  • Open Access

    ARTICLE

    Analytical Estimation of Radar Cross Section of Infinitely Long Conducting Cylinder Coated with Metamaterial

    Girish K.1, Hema Singh2

    CMC-Computers, Materials & Continua, Vol.52, No.3, pp. 197-212, 2016, DOI:10.3970/cmc.2016.052.196

    Abstract Aerospace structures can be approximately modeled as a combination of canonical structures such as cylinder, cone and ellipsoid. Thus the RCS estimation of such canonical structures is of prime interest. Furthermore metamaterials possess peculiar electromagnetic properties which can be useful in modifying the RCS of structures. This paper is aimed at calculating the RCS of an infinitely long PEC circular cylinder coated with one or two layers of metamaterial. The incident and scattered fields of coated cylinder are expressed in terms of series summation of Bessel and Hankel functions. The unknown coefficients of summation are More >

Displaying 1-10 on page 1 of 19. Per Page