Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    PROCEEDINGS

    A Cosserat Bond-Based Correspondence Model

    Zhuang Chen1, Xihua Chu1,*, Diansen Yang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.09057

    Abstract In this study, we develop a Cosserat bond-based correspondence model(Cosserat BBCM) based on the bondbased correspondence model (BBCM)[1]. BBCM is a generalized bond-based peridynamic model, where the peridynamic pair-wise force (PD force) is calculated by classical constitutive equations through the relation between PD force and stress. In our previous study, we develop the Cosserat peridynamic model (CPM) to investigate the microstructure-related crack growth behavior [2, 3]. But the interactions between material particles are represented by PD forces and moments instead of the stress and couple stress. Due to this divergence, the Cosserat constitutive model such More >

  • Open Access

    PROCEEDINGS

    Study on Crack Propagation Behavior of Concrete with Water Fracture Interactions

    Wenhu Zhao1,2,*, Chengbin Du2, Xiaocui Chen2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.010048

    Abstract Concrete structures such as offshore platforms, costal and port structures, dams, etc., are often submerged in water [1]. The water within concreter pores or cracks has a great influence on crack propagation behavior [2,3]. Several wedge-splitting experiments of compact specimens are conducted with a designed sealing device to study the water effects on concrete crack propagation. Different water pressures and different loading rates are considered loading on the pre-crack surfaces and waterproof strain gauges are stuck along the crack path to observe the fracture process during the experiments. Water pressure values on crack surfaces are… More >

  • Open Access

    PROCEEDINGS

    On the Fatigue Damage of GH4169 Based on Thermodynamic Entropy Generation

    Shuiting Ding1, Liangliang Zuo2, Guo Li2,*, Zhenlei Li3, Shuyang Xia2, Shaochen Bao3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09911

    Abstract This paper presents the assessment of fatigue damage for GH4169 under cyclic loading based on thermodynamic entropy generation at elevated temperature. According to the second law of thermodynamics, fatigue crack propagation is an irreversible thermodynamic dissipative process in which damage accumulates and entropy generates with each cycle until fracture occurs. In this work, crack growth process is simulated by commercial finite element software ABAQUS, and the concept of cyclic entropy generation rate (CEGR) is proposed to present the entropy generation of the crack tip region in a single loading cycle, where the calculation of CEGR… More >

Displaying 1-10 on page 1 of 3. Per Page