Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Bearing Fault Diagnosis Based on Deep Discriminative Adversarial Domain Adaptation Neural Networks

    Jinxi Guo1, Kai Chen1,2, Jiehui Liu1, Yuhao Ma2, Jie Wu2,*, Yaochun Wu2, Xiaofeng Xue3, Jianshen Li1

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2619-2640, 2024, DOI:10.32604/cmes.2023.031360 - 15 December 2023

    Abstract Intelligent diagnosis driven by big data for mechanical fault is an important means to ensure the safe operation of equipment. In these methods, deep learning-based machinery fault diagnosis approaches have received increasing attention and achieved some results. It might lead to insufficient performance for using transfer learning alone and cause misclassification of target samples for domain bias when building deep models to learn domain-invariant features. To address the above problems, a deep discriminative adversarial domain adaptation neural network for the bearing fault diagnosis model is proposed (DDADAN). In this method, the raw vibration data are… More >

Displaying 1-10 on page 1 of 1. Per Page