Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (482)
  • Open Access

    ARTICLE

    Deep Learning Multimodal for Unstructured and Semi-Structured Textual Documents Classification

    Nany Katamesh, Osama Abu-Elnasr*, Samir Elmougy

    CMC-Computers, Materials & Continua, Vol.68, No.1, pp. 589-606, 2021, DOI:10.32604/cmc.2021.015761

    Abstract Due to the availability of a huge number of electronic text documents from a variety of sources representing unstructured and semi-structured information, the document classification task becomes an interesting area for controlling data behavior. This paper presents a document classification multimodal for categorizing textual semi-structured and unstructured documents. The multimodal implements several individual deep learning models such as Deep Neural Networks (DNN), Recurrent Convolutional Neural Networks (RCNN) and Bidirectional-LSTM (Bi-LSTM). The Stacked Ensemble based meta-model technique is used to combine the results of the individual classifiers to produce better results, compared to those reached by any of the above mentioned… More >

  • Open Access

    ARTICLE

    An Optimized Deep Residual Network with a Depth Concatenated Block for Handwritten Characters Classification

    Gibrael Abosamra*, Hadi Oqaibi

    CMC-Computers, Materials & Continua, Vol.68, No.1, pp. 1-28, 2021, DOI:10.32604/cmc.2021.015318

    Abstract Even though much advancements have been achieved with regards to the recognition of handwritten characters, researchers still face difficulties with the handwritten character recognition problem, especially with the advent of new datasets like the Extended Modified National Institute of Standards and Technology dataset (EMNIST). The EMNIST dataset represents a challenge for both machine-learning and deep-learning techniques due to inter-class similarity and intra-class variability. Inter-class similarity exists because of the similarity between the shapes of certain characters in the dataset. The presence of intra-class variability is mainly due to different shapes written by different writers for the same character. In this… More >

  • Open Access

    ARTICLE

    Automatic BIM Indoor Modelling from Unstructured Point Clouds Using a Convolutional Neural Network

    Uuganbayar Gankhuyag, Ji-Hyeong Han*

    Intelligent Automation & Soft Computing, Vol.28, No.1, pp. 133-152, 2021, DOI:10.32604/iasc.2021.015227

    Abstract The automated reconstruction of building information modeling (BIM) objects from unstructured point cloud data for indoor as-built modeling is still a challenging task and the subject of much ongoing research. The most important part of the process is to detect the wall geometry clearly. A popular method is first to segment and classify point clouds, after which the identified segments should be clustered according to their corresponding objects, such as walls and clutter. To perform this process, a major problem is low-quality point clouds that are noisy, cluttered and that contain missing parts in the data. Moreover, the size of… More >

  • Open Access

    ARTICLE

    Design of Network Cascade Structure for Image Super-Resolution

    Jianwei Zhang, Zhenxing Wang, Yuhui Zheng, Guoqing Zhang*

    Journal of New Media, Vol.3, No.1, pp. 29-39, 2021, DOI:10.32604/jnm.2021.018383

    Abstract Image super resolution is an important field of computer research. The current mainstream image super-resolution technology is to use deep learning to mine the deeper features of the image, and then use it for image restoration. However, most of these models mentioned above only trained the images in a specific scale and do not consider the relationships between different scales of images. In order to utilize the information of images at different scales, we design a cascade network structure and cascaded super-resolution convolutional neural networks. This network contains three cascaded FSRCNNs. Due to each sub FSRCNN can process a specific… More >

  • Open Access

    ARTICLE

    Weed Recognition for Depthwise Separable Network Based on Transfer Learning

    Yanlei Xu1, Yuting Zhai1, Bin Zhao1, Yubin Jiao2, ShuoLin Kong1, Yang Zhou1,*, Zongmei Gao3

    Intelligent Automation & Soft Computing, Vol.27, No.3, pp. 669-682, 2021, DOI:10.32604/iasc.2021.015225

    Abstract For improving the accuracy of weed recognition under complex field conditions, a weed recognition method using depthwise separable convolutional neural network based on deep transfer learning was proposed in this study. To improve the model classification accuracy, the Xception model was refined by using model transferring and fine-tuning. Specifically, the weight parameters trained by ImageNet data set were transferred to the Xception model. Then a global average pooling layer replaced the full connection layer of the Xception model. Finally, the XGBoost classifier was added to the top layer of the model to output results. The performance of the proposed model… More >

  • Open Access

    ARTICLE

    A Deep Learning-Based Recognition Approach for the Conversion of Multilingual Braille Images

    Abdulmalik AlSalman1, Abdu Gumaei1,*, Amani AlSalman2, Suheer Al-Hadhrami1

    CMC-Computers, Materials & Continua, Vol.67, No.3, pp. 3847-3864, 2021, DOI:10.32604/cmc.2021.015614

    Abstract Braille-assistive technologies have helped blind people to write, read, learn, and communicate with sighted individuals for many years. These technologies enable blind people to engage with society and help break down communication barriers in their lives. The Optical Braille Recognition (OBR) system is one example of these technologies. It plays an important role in facilitating communication between sighted and blind people and assists sighted individuals in the reading and understanding of the documents of Braille cells. However, a clear gap exists in current OBR systems regarding asymmetric multilingual conversion of Braille documents. Few systems allow sighted people to read and… More >

  • Open Access

    ARTICLE

    CNN Ensemble Approach to Detect COVID-19 from Computed Tomography Chest Images

    Haikel Alhichri*

    CMC-Computers, Materials & Continua, Vol.67, No.3, pp. 3581-3599, 2021, DOI:10.32604/cmc.2021.015399

    Abstract In January 2020, the World Health Organization declared a global health emergency concerning the spread of a new coronavirus disease, which was later named COVID-19. Early and fast diagnosis and isolation of COVID-19 patients have proven to be instrumental in limiting the spread of the disease. Computed tomography (CT) is a promising imaging method for fast diagnosis of COVID-19. In this study, we develop a unique preprocessing step to resize CT chest images to a fixed size (256 × 256 pixels) that preserves the aspect ratio and reduces image loss. Then, we present a deep learning (DL) method to classify… More >

  • Open Access

    ARTICLE

    1D-CNN: Speech Emotion Recognition System Using a Stacked Network with Dilated CNN Features

    Mustaqeem, Soonil Kwon*

    CMC-Computers, Materials & Continua, Vol.67, No.3, pp. 4039-4059, 2021, DOI:10.32604/cmc.2021.015070

    Abstract Emotion recognition from speech data is an active and emerging area of research that plays an important role in numerous applications, such as robotics, virtual reality, behavior assessments, and emergency call centers. Recently, researchers have developed many techniques in this field in order to ensure an improvement in the accuracy by utilizing several deep learning approaches, but the recognition rate is still not convincing. Our main aim is to develop a new technique that increases the recognition rate with reasonable cost computations. In this paper, we suggested a new technique, which is a one-dimensional dilated convolutional neural network (1D-DCNN) for… More >

  • Open Access

    ARTICLE

    Deep Learning-Based Hookworm Detection in Wireless Capsule Endoscopic Image Using AdaBoost Classifier

    K. Lakshminarayanan1, N. Muthukumaran1, Y. Harold Robinson2, Vimal Shanmuganathan3, Seifedine Kadry4, Yunyoung Nam5,*

    CMC-Computers, Materials & Continua, Vol.67, No.3, pp. 3045-3055, 2021, DOI:10.32604/cmc.2021.014370

    Abstract Hookworm is an illness caused by an internal sponger called a roundworm. Inferable from deprived cleanliness in the developing nations, hookworm infection is a primary source of concern for both motherly and baby grimness. The current framework for hookworm detection is composed of hybrid convolutional neural networks; explicitly an edge extraction framework alongside a hookworm classification framework is developed. To consolidate the cylindrical zones obtained from the edge extraction framework and the trait map acquired into the hookworm scientific categorization framework, pooling layers are proposed. The hookworms display different profiles, widths, and bend directions. These challenges make it difficult for… More >

  • Open Access

    ARTICLE

    Electroencephalogram (EEG) Brain Signals to Detect Alcoholism Based on Deep Learning

    Emad-ul-Haq Qazi, Muhammad Hussain*, Hatim A. AboAlsamh

    CMC-Computers, Materials & Continua, Vol.67, No.3, pp. 3329-3348, 2021, DOI:10.32604/cmc.2021.013589

    Abstract The detection of alcoholism is of great importance due to its effects on individuals and society. Automatic alcoholism detection system (AADS) based on electroencephalogram (EEG) signals is effective, but the design of a robust AADS is a challenging problem. AADS’ current designs are based on conventional, hand-engineered methods and restricted performance. Driven by the excellent deep learning (DL) success in many recognition tasks, we implement an AAD system based on EEG signals using DL. A DL model requires huge number of learnable parameters and also needs a large dataset of EEG signals for training which is not easy to obtain… More >

Displaying 401-410 on page 41 of 482. Per Page