Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    CAEFusion: A New Convolutional Autoencoder-Based Infrared and Visible Light Image Fusion Algorithm

    Chun-Ming Wu1, Mei-Ling Ren2,*, Jin Lei2, Zi-Mu Jiang3

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2857-2872, 2024, DOI:10.32604/cmc.2024.053708 - 15 August 2024

    Abstract To address the issues of incomplete information, blurred details, loss of details, and insufficient contrast in infrared and visible image fusion, an image fusion algorithm based on a convolutional autoencoder is proposed. The region attention module is meant to extract the background feature map based on the distinct properties of the background feature map and the detail feature map. A multi-scale convolution attention module is suggested to enhance the communication of feature information. At the same time, the feature transformation module is introduced to learn more robust feature representations, aiming to preserve the integrity of… More >

  • Open Access

    ARTICLE

    A Convolutional Autoencoder Based Fault Detection Method for Metro Railway Turnout

    Chen Chen1,2, Xingqiu Li2,3,*, Kai Huang4, Zhongwei Xu1, Meng Mei1

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.1, pp. 471-485, 2023, DOI:10.32604/cmes.2023.024033 - 05 January 2023

    Abstract Railway turnout is one of the critical equipment of Switch & Crossing (S&C) Systems in railway, related to the train’s safety and operation efficiency. With the advancement of intelligent sensors, data-driven fault detection technology for railway turnout has become an important research topic. However, little research in the literature has investigated the capability of data-driven fault detection technology for metro railway turnout. This paper presents a convolutional autoencoder-based fault detection method for the metro railway turnout considering human field inspection scenarios. First, the one-dimensional original time-series signal is converted into a two-dimensional image by data More >

  • Open Access

    ARTICLE

    Criss-Cross Attention Based Auto Encoder for Video Anomaly Event Detection

    Jiaqi Wang1, Jie Zhang2, Genlin Ji2,*, Bo Sheng3

    Intelligent Automation & Soft Computing, Vol.34, No.3, pp. 1629-1642, 2022, DOI:10.32604/iasc.2022.029535 - 25 May 2022

    Abstract The surveillance applications generate enormous video data and present challenges to video analysis for huge human labor cost. Reconstruction-based convolutional autoencoders have achieved great success in video anomaly detection for their ability of automatically detecting abnormal event. The approaches learn normal patterns only with the normal data in an unsupervised way due to the difficulty of collecting anomaly samples and obtaining anomaly annotations. But convolutional autoencoders have limitations in global feature extraction for the local receptive field of convolutional kernels. What is more, 2-dimensional convolution lacks the capability of capturing temporal information while videos change… More >

  • Open Access

    ARTICLE

    Automatic Detection of COVID-19 Using a Stacked Denoising Convolutional Autoencoder

    Habib Dhahri1,2,*, Besma Rabhi3, Slaheddine Chelbi4, Omar Almutiry1, Awais Mahmood1, Adel M. Alimi3

    CMC-Computers, Materials & Continua, Vol.69, No.3, pp. 3259-3274, 2021, DOI:10.32604/cmc.2021.018449 - 24 August 2021

    Abstract The exponential increase in new coronavirus disease 2019 ({COVID-19}) cases and deaths has made COVID-19 the leading cause of death in many countries. Thus, in this study, we propose an efficient technique for the automatic detection of COVID-19 and pneumonia based on X-ray images. A stacked denoising convolutional autoencoder (SDCA) model was proposed to classify X-ray images into three classes: normal, pneumonia, and {COVID-19}. The SDCA model was used to obtain a good representation of the input data and extract the relevant features from noisy images. The proposed model’s architecture mainly composed of eight autoencoders, More >

Displaying 1-10 on page 1 of 4. Per Page