Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    Computer Vision-Control-Based CNN-PID for Mobile Robot

    Rihem Farkh1,5,*, Mohammad Tabrez Quasim2, Khaled Al jaloud1, Saad Alhuwaimel3, Shams Tabrez Siddiqui4

    CMC-Computers, Materials & Continua, Vol.68, No.1, pp. 1065-1079, 2021, DOI:10.32604/cmc.2021.016600 - 22 March 2021

    Abstract With the development of artificial intelligence technology, various sectors of industry have developed. Among them, the autonomous vehicle industry has developed considerably, and research on self-driving control systems using artificial intelligence has been extensively conducted. Studies on the use of image-based deep learning to monitor autonomous driving systems have recently been performed. In this paper, we propose an advanced control for a serving robot. A serving robot acts as an autonomous line-follower vehicle that can detect and follow the line drawn on the floor and move in specified directions. The robot should be able to More >

  • Open Access

    ARTICLE

    Multi-Scale Blind Image Quality Predictor Based on Pyramidal Convolution

    Feng Yuan, Xiao Shao*

    Journal on Big Data, Vol.2, No.4, pp. 167-176, 2020, DOI:10.32604/jbd.2020.015357 - 24 December 2020

    Abstract Traditional image quality assessment methods use the hand-crafted features to predict the image quality score, which cannot perform well in many scenes. Since deep learning promotes the development of many computer vision tasks, many IQA methods start to utilize the deep convolutional neural networks (CNN) for IQA task. In this paper, a CNN-based multi-scale blind image quality predictor is proposed to extract more effectivity multi-scale distortion features through the pyramidal convolution, which consists of two tasks: A distortion recognition task and a quality regression task. For the first task, image distortion type is obtained by More >

  • Open Access

    ARTICLE

    Median Filtering Detection Based on Quaternion Convolutional Neural Network

    Jinwei Wang1, 2, 3, 4, Qiye Ni3, Yang Zhang3, Xiangyang Luo2, *, Yunqing Shi5, Jiangtao Zhai3, Sunil Kr Jha3

    CMC-Computers, Materials & Continua, Vol.65, No.1, pp. 929-943, 2020, DOI:10.32604/cmc.2020.06569 - 23 July 2020

    Abstract Median filtering is a nonlinear signal processing technique and has an advantage in the field of image anti-forensics. Therefore, more attention has been paid to the forensics research of median filtering. In this paper, a median filtering forensics method based on quaternion convolutional neural network (QCNN) is proposed. The median filtering residuals (MFR) are used to preprocess the images. Then the output of MFR is expanded to four channels and used as the input of QCNN. In QCNN, quaternion convolution is designed that can better mix the information of different channels than traditional methods. The More >

  • Open Access

    ARTICLE

    An Opinion Spam Detection Method Based on Multi-Filters Convolutional Neural Network

    Ye Wang1, Bixin Liu2, Hongjia Wu1, Shan Zhao1, Zhiping Cai1, *, Donghui Li3, *, Cheang Chak Fong4

    CMC-Computers, Materials & Continua, Vol.65, No.1, pp. 355-367, 2020, DOI:10.32604/cmc.2020.09835 - 23 July 2020

    Abstract With the continuous development of e-commerce, consumers show increasing interest in posting comments on consumption experience and quality of commodities. Meanwhile, people make purchasing decisions relying on other comments much more than ever before. So the reliability of commodity comments has a significant impact on ensuring consumers’ equity and building a fair internet-trade-environment. However, some unscrupulous online-sellers write fake praiseful reviews for themselves and malicious comments for their business counterparts to maximize their profits. Those improper ways of self-profiting have severely ruined the entire online shopping industry. Aiming to detect and prevent these deceptive comments More >

  • Open Access

    ARTICLE

    Intelligent Detection Model Based on a Fully Convolutional Neural Network for Pavement Cracks

    Duo Ma1, 2, 3, Hongyuan Fang1, 2, 3, *, Binghan Xue1, 2, 3, Fuming Wang1, 2, 3, Mohammed A. Msekh4, Chiu Ling Chan5

    CMES-Computer Modeling in Engineering & Sciences, Vol.123, No.3, pp. 1267-1291, 2020, DOI:10.32604/cmes.2020.09122 - 28 May 2020

    Abstract The crack is a common pavement failure problem. A lack of periodic maintenance will result in extending the cracks and damage the pavement, which will affect the normal use of the road. Therefore, it is significant to establish an efficient intelligent identification model for pavement cracks. The neural network is a method of simulating animal nervous systems using gradient descent to predict results by learning a weight matrix. It has been widely used in geotechnical engineering, computer vision, medicine, and other fields. However, there are three major problems in the application of neural networks to… More >

Displaying 1-10 on page 1 of 5. Per Page