Empowering Human Decision-Making in AI Models: The Path to Trust and Transparency
Open Access
ARTICLE
Structural Durability & Health Monitoring, Vol.17, No.1, pp. 1-22, 2023, DOI:10.32604/sdhm.2023.018632
Abstract Accurate and reliable crack segmentation is a challenge and meaningful task. In this article, aiming at the characteristics of cracks on the concrete images, the intensity frequency information of source images which is obtained by Discrete Wavelet Transform (DWT) is fed into deep learning-based networks to enhance the ability of network on crack segmentation. To well integrate frequency information into network an effective and novel DWTA module based on the DWT and scSE attention mechanism is proposed. The semantic information of cracks is enhanced and the irrelevant information is suppressed by DWTA module. And the gap between frequency information and… More >
Open Access
ARTICLE
Computer Systems Science and Engineering, Vol.46, No.2, pp. 2601-2618, 2023, DOI:10.32604/csse.2023.030503
Abstract The prediction of mild cognitive impairment or Alzheimer’s disease (AD) has gained the attention of huge researchers as the disease occurrence is increasing, and there is a need for earlier prediction. Regrettably, due to the high-dimensionality nature of neural data and the least available samples, modelling an efficient computer diagnostic system is highly solicited. Learning approaches, specifically deep learning approaches, are essential in disease prediction. Deep Learning (DL) approaches are successfully demonstrated for their higher-level performance in various fields like medical imaging. A novel 3D-Convolutional Neural Network (3D-CNN) architecture is proposed to predict AD with Magnetic resonance imaging (MRI) data.… More >
Open Access
ARTICLE
CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 461-475, 2023, DOI:10.32604/cmc.2023.035672
Abstract The extent of the peril associated with cancer can be perceived from the lack of treatment, ineffective early diagnosis techniques, and most importantly its fatality rate. Globally, cancer is the second leading cause of death and among over a hundred types of cancer; lung cancer is the second most common type of cancer as well as the leading cause of cancer-related deaths. Anyhow, an accurate lung cancer diagnosis in a timely manner can elevate the likelihood of survival by a noticeable margin and medical imaging is a prevalent manner of cancer diagnosis since it is easily accessible to people around… More >
Open Access
ARTICLE
CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 697-714, 2023, DOI:10.32604/cmc.2023.035183
Abstract Identifying fruit disease manually is time-consuming, expert-required, and expensive; thus, a computer-based automated system is widely required. Fruit diseases affect not only the quality but also the quantity. As a result, it is possible to detect the disease early on and cure the fruits using computer-based techniques. However, computer-based methods face several challenges, including low contrast, a lack of dataset for training a model, and inappropriate feature extraction for final classification. In this paper, we proposed an automated framework for detecting apple fruit leaf diseases using CNN and a hybrid optimization algorithm. Data augmentation is performed initially to balance the… More >
Open Access
ARTICLE
Computer Systems Science and Engineering, Vol.45, No.2, pp. 1279-1294, 2023, DOI:10.32604/csse.2023.031001
Abstract The main components of Cognitive Radio networks are Primary Users (PU) and Secondary Users (SU). The most essential method used in Cognitive networks is Spectrum Sensing, which detects the spectrum band and opportunistically accesses the free white areas for different users. Exploiting the free spaces helps to increase the spectrum efficiency. But the existing spectrum sensing techniques such as energy detectors, cyclo-stationary detectors suffer from various problems such as complexity, non-responsive behaviors under low Signal to Noise Ratio (SNR) and computational overhead, which affects the performance of the sensing accuracy. Many algorithms such as Long-Short Term Memory (LSTM), Convolutional Neural… More >
Open Access
ARTICLE
Computer Systems Science and Engineering, Vol.45, No.2, pp. 1047-1061, 2023, DOI:10.32604/csse.2023.030513
Abstract Deep learning has reached many successes in Video Processing. Video has become a growing important part of our daily digital interactions. The advancement of better resolution content and the large volume offers serious challenges to the goal of receiving, distributing, compressing and revealing high-quality video content. In this paper we propose a novel Effective and Efficient video compression by the Deep Learning framework based on the flask, which creatively combines the Deep Learning Techniques on Convolutional Neural Networks (CNN) and Generative Adversarial Networks (GAN). The video compression method involves the layers are divided into different groups for data processing, using… More >
Open Access
ARTICLE
CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 3539-3560, 2023, DOI:10.32604/cmc.2023.032976
Abstract This paper introduces the third enhanced version of a genetic algorithm-based technique to allow fast and accurate detection of vehicle plate numbers (VPLN) in challenging image datasets. Since binarization of the input image is the most important and difficult step in the detection of VPLN, a hybrid technique is introduced that fuses the outputs of three fast techniques into a pool of connected components objects (CCO) and hence enriches the solution space with more solution candidates. Due to the combination of the outputs of the three binarization techniques, many CCOs are produced into the output pool from which one or… More >
Open Access
ARTICLE
CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 2905-2925, 2023, DOI:10.32604/cmc.2023.031936
Abstract Medical image fusion is considered the best method for obtaining one image with rich details for efficient medical diagnosis and therapy. Deep learning provides a high performance for several medical image analysis applications. This paper proposes a deep learning model for the medical image fusion process. This model depends on Convolutional Neural Network (CNN). The basic idea of the proposed model is to extract features from both CT and MR images. Then, an additional process is executed on the extracted features. After that, the fused feature map is reconstructed to obtain the resulting fused image. Finally, the quality of the… More >
Open Access
ARTICLE
Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 1105-1119, 2023, DOI:10.32604/iasc.2023.032832
Abstract The performance of Hand Gesture Recognition (HGR) depends on the hand shape. Segmentation helps in the recognition of hand gestures for more accuracy and improves the overall performance compared to other existing deep neural networks. The crucial segmentation task is extremely complicated because of the background complexity, variation in illumination etc. The proposed modified UNET and ensemble model of Convolutional Neural Networks (CNN) undergoes a two stage process and results in proper hand gesture recognition. The first stage is segmenting the regions of the hand and the second stage is gesture identification. The modified UNET segmentation model is trained using… More >
Open Access
ARTICLE
CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 83-99, 2023, DOI:10.32604/cmc.2023.032739
Abstract A system for classifying four basic table tennis strokes using wearable devices and deep learning networks is proposed in this study. The wearable device consisted of a six-axis sensor, Raspberry Pi 3, and a power bank. Multiple kernel sizes were used in convolutional neural network (CNN) to evaluate their performance for extracting features. Moreover, a multiscale CNN with two kernel sizes was used to perform feature fusion at different scales in a concatenated manner. The CNN achieved recognition of the four table tennis strokes. Experimental data were obtained from 20 research participants who wore sensors on the back of their… More >