Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (22)
  • Open Access

    ARTICLE

    Liver Tumor Prediction with Advanced Attention Mechanisms Integrated into a Depth-Based Variant Search Algorithm

    P. Kalaiselvi1,*, S. Anusuya2

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 1209-1226, 2023, DOI:10.32604/cmc.2023.040264 - 31 October 2023

    Abstract In recent days, Deep Learning (DL) techniques have become an emerging transformation in the field of machine learning, artificial intelligence, computer vision, and so on. Subsequently, researchers and industries have been highly endorsed in the medical field, predicting and controlling diverse diseases at specific intervals. Liver tumor prediction is a vital chore in analyzing and treating liver diseases. This paper proposes a novel approach for predicting liver tumors using Convolutional Neural Networks (CNN) and a depth-based variant search algorithm with advanced attention mechanisms (CNN-DS-AM). The proposed work aims to improve accuracy and robustness in diagnosing… More >

  • Open Access

    ARTICLE

    Text Extraction with Optimal Bi-LSTM

    Bahera H. Nayef1,*, Siti Norul Huda Sheikh Abdullah2, Rossilawati Sulaiman2, Ashwaq Mukred Saeed3

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3549-3567, 2023, DOI:10.32604/cmc.2023.039528 - 08 October 2023

    Abstract Text extraction from images using the traditional techniques of image collecting, and pattern recognition using machine learning consume time due to the amount of extracted features from the images. Deep Neural Networks introduce effective solutions to extract text features from images using a few techniques and the ability to train large datasets of images with significant results. This study proposes using Dual Maxpooling and concatenating convolution Neural Networks (CNN) layers with the activation functions Relu and the Optimized Leaky Relu (OLRelu). The proposed method works by dividing the word image into slices that contain characters.… More >

  • Open Access

    ARTICLE

    A Low-Power 12-Bit SAR ADC for Analog Convolutional Kernel of Mixed-Signal CNN Accelerator

    Jungyeon Lee1, Malik Summair Asghar1,2, HyungWon Kim1,*

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 4357-4375, 2023, DOI:10.32604/cmc.2023.031372 - 31 March 2023

    Abstract As deep learning techniques such as Convolutional Neural Networks (CNNs) are widely adopted, the complexity of CNNs is rapidly increasing due to the growing demand for CNN accelerator system-on-chip (SoC). Although conventional CNN accelerators can reduce the computational time of learning and inference tasks, they tend to occupy large chip areas due to many multiply-and-accumulate (MAC) operators when implemented in complex digital circuits, incurring excessive power consumption. To overcome these drawbacks, this work implements an analog convolutional filter consisting of an analog multiply-and-accumulate arithmetic circuit along with an analog-to-digital converter (ADC). This paper introduces the… More >

  • Open Access

    ARTICLE

    Lightweight Multi-scale Convolutional Neural Network for Rice Leaf Disease Recognition

    Chang Zhang1, Ruiwen Ni1, Ye Mu1,2,3,4, Yu Sun1,2,3,4,*, Thobela Louis Tyasi5

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 983-994, 2023, DOI:10.32604/cmc.2023.027269 - 22 September 2022

    Abstract In the field of agricultural information, the identification and prediction of rice leaf disease have always been the focus of research, and deep learning (DL) technology is currently a hot research topic in the field of pattern recognition. The research and development of high-efficiency, high-quality and low-cost automatic identification methods for rice diseases that can replace humans is an important means of dealing with the current situation from a technical perspective. This paper mainly focuses on the problem of huge parameters of the Convolutional Neural Network (CNN) model and proposes a recognition model that combines More >

  • Open Access

    ARTICLE

    SF-CNN: Deep Text Classification and Retrieval for Text Documents

    R. Sarasu1,*, K. K. Thyagharajan2, N. R. Shanker3

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 1799-1813, 2023, DOI:10.32604/iasc.2023.027429 - 19 July 2022

    Abstract Researchers and scientists need rapid access to text documents such as research papers, source code and dissertations. Many research documents are available on the Internet and need more time to retrieve exact documents based on keywords. An efficient classification algorithm for retrieving documents based on keyword words is required. The traditional algorithm performs less because it never considers words’ polysemy and the relationship between bag-of-words in keywords. To solve the above problem, Semantic Featured Convolution Neural Networks (SF-CNN) is proposed to obtain the key relationships among the searching keywords and build a structure for matching More >

  • Open Access

    ARTICLE

    An Optimized and Hybrid Framework for Image Processing Based Network Intrusion Detection System

    Murtaza Ahmed Siddiqi, Wooguil Pak*

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 3921-3949, 2022, DOI:10.32604/cmc.2022.029541 - 16 June 2022

    Abstract The network infrastructure has evolved rapidly due to the ever-increasing volume of users and data. The massive number of online devices and users has forced the network to transform and facilitate the operational necessities of consumers. Among these necessities, network security is of prime significance. Network intrusion detection systems (NIDS) are among the most suitable approaches to detect anomalies and assaults on a network. However, keeping up with the network security requirements is quite challenging due to the constant mutation in attack patterns by the intruders. This paper presents an effective and prevalent framework for More >

  • Open Access

    ARTICLE

    Development of Mobile App to Support the Mobility of Visually Impaired People

    R. Meenakshi1, R. Ponnusamy1,*, Saleh Alghamdi2, Osama Ibrahim Khalaf3, Youseef Alotaibi4

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 3473-3495, 2022, DOI:10.32604/cmc.2022.028540 - 16 June 2022

    Abstract In 2017, it was estimated that the number of persons of all ages visually affected would be two hundred and eighty-five million, of which thirty-nine million are blind. There are several innovative technical solutions available to facilitate the movement of these people. The next big challenge for technical people is to give cost-effective solutions. One of the challenges for people with visual impairments is navigating safely, recognizing obstacles, and moving freely between locations in unfamiliar environments. A new mobile application solution is developed, and the application can be installed in android mobile. The application will More >

  • Open Access

    ARTICLE

    An Enhanced Deep Learning Method for Skin Cancer Detection and Classification

    Mohamed W. Abo El-Soud1,2,*, Tarek Gaber2,3, Mohamed Tahoun2, Abdullah Alourani1

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 1109-1123, 2022, DOI:10.32604/cmc.2022.028561 - 18 May 2022

    Abstract The prevalence of melanoma skin cancer has increased in recent decades. The greatest risk from melanoma is its ability to broadly spread throughout the body by means of lymphatic vessels and veins. Thus, the early diagnosis of melanoma is a key factor in improving the prognosis of the disease. Deep learning makes it possible to design and develop intelligent systems that can be used in detecting and classifying skin lesions from visible-light images. Such systems can provide early and accurate diagnoses of melanoma and other types of skin diseases. This paper proposes a new method… More >

  • Open Access

    ARTICLE

    Deep Learning Convolutional Neural Network for ECG Signal Classification Aggregated Using IoT

    S. Karthiga*, A. M. Abirami

    Computer Systems Science and Engineering, Vol.42, No.3, pp. 851-866, 2022, DOI:10.32604/csse.2022.021935 - 08 February 2022

    Abstract Much attention has been given to the Internet of Things (IoT) by citizens, industries, governments, and universities for applications like smart buildings, environmental monitoring, health care and so on. With IoT, network connectivity is facilitated between smart devices from anyplace and anytime. IoT-based health monitoring systems are gaining popularity and acceptance for continuous monitoring and detect health abnormalities from the data collected. Electrocardiographic (ECG) signals are widely used for heart diseases detection. A novel method has been proposed in this work for ECG monitoring using IoT techniques. In this work, a two-stage approach is employed.… More >

  • Open Access

    ARTICLE

    Improving Date Fruit Classification Using CycleGAN-Generated Dataset

    Dina M. Ibrahim1,2,*, Nada M. Elshennawy2

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.1, pp. 331-348, 2022, DOI:10.32604/cmes.2022.016419 - 24 January 2022

    Abstract Dates are an important part of human nutrition. Dates are high in essential nutrients and provide a number of health benefits. Date fruits are also known to protect against a number of diseases, including cancer and heart disease. Date fruits have several sizes, colors, tastes, and values. There are a lot of challenges facing the date producers. One of the most significant challenges is the classification and sorting of dates. But there is no public dataset for date fruits, which is a major limitation in order to improve the performance of convolutional neural networks (CNN)… More >

Displaying 1-10 on page 1 of 22. Per Page