Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (587)
  • Open Access

    ARTICLE

    Prediction of the Wastewater’s pH Based on Deep Learning Incorporating Sliding Windows

    Aiping Xu1,2, Xuan Zou3, Chao Wang2,*

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 1043-1059, 2023, DOI:10.32604/csse.2023.039645

    Abstract To protect the environment, the discharged sewage’s quality must meet the state’s discharge standards. There are many water quality indicators, and the pH (Potential of Hydrogen) value is one of them. The natural water’s pH value is 6.0–8.5. The sewage treatment plant uses some data in the sewage treatment process to monitor and predict whether wastewater’s pH value will exceed the standard. This paper aims to study the deep learning prediction model of wastewater’s pH. Firstly, the research uses the random forest method to select the data features and then, based on the sliding window, convert the data set into… More >

  • Open Access

    ARTICLE

    CDR2IMG: A Bridge from Text to Image in Telecommunication Fraud Detection

    Zhen Zhen1, Jian Gao1,2,*

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 955-973, 2023, DOI:10.32604/csse.2023.039525

    Abstract Telecommunication fraud has run rampant recently worldwide. However, previous studies depend highly on expert knowledge-based feature engineering to extract behavior information, which cannot adapt to the fast-changing modes of fraudulent subscribers. Therefore, we propose a new taxonomy that needs no hand-designed features but directly takes raw Call Detail Records (CDR) data as input for the classifier. Concretely, we proposed a fraud detection method using a convolutional neural network (CNN) by taking CDR data as images and applying computer vision techniques like image augmentation. Comprehensive experiments on the real-world dataset from the 2020 Digital Sichuan Innovation Competition show that our proposed… More >

  • Open Access

    ARTICLE

    A Real-Time Pedestrian Social Distancing Risk Alert System for COVID-19

    Zhihan Liu1, Xiang Li1, Siqi Liu2, Wei Li1,*, Xiangxu Meng1, Jing Jia3

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 937-954, 2023, DOI:10.32604/csse.2023.039417

    Abstract The COVID-19 virus is usually spread by small droplets when talking, coughing and sneezing, so maintaining physical distance between people is necessary to slow the spread of the virus. The World Health Organization (WHO) recommends maintaining a social distance of at least six feet. In this paper, we developed a real-time pedestrian social distance risk alert system for COVID-19, which monitors the distance between people in real-time via video streaming and provides risk alerts to the person in charge, thus avoiding the problem of too close social distance between pedestrians in public places. We design a lightweight convolutional neural network… More >

  • Open Access

    ARTICLE

    Identifying Severity of COVID-19 Medical Images by Categorizing Using HSDC Model

    K. Ravishankar*, C. Jothikumar

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 613-635, 2023, DOI:10.32604/csse.2023.038343

    Abstract Since COVID-19 infections are increasing all over the world, there is a need for developing solutions for its early and accurate diagnosis is a must. Detection methods for COVID-19 include screening methods like Chest X-rays and Computed Tomography (CT) scans. More work must be done on preprocessing the datasets, such as eliminating the diaphragm portions, enhancing the image intensity, and minimizing noise. In addition to the detection of COVID-19, the severity of the infection needs to be estimated. The HSDC model is proposed to solve these problems, which will detect and classify the severity of COVID-19 from X-ray and CT-scan… More >

  • Open Access

    ARTICLE

    COVID TCL: A Joint Metric Loss Function for Diagnosing COVID-19 Patient in the Early and Incubation Period

    Rui Wen1,*, Jie Zhou2, Zhongliang Shen1, Xiaorui Zhang2,3,4, Sunil Kumar Jha5

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 187-204, 2023, DOI:10.32604/csse.2023.037889

    Abstract Convolution Neural Networks (CNN) can quickly diagnose COVID-19 patients by analyzing computed tomography (CT) images of the lung, thereby effectively preventing the spread of COVID-19. However, the existing CNN-based COVID-19 diagnosis models do consider the problem that the lung images of COVID-19 patients in the early stage and incubation period are extremely similar to those of the non-COVID-19 population. Which reduces the model’s classification sensitivity, resulting in a higher probability of the model misdiagnosing COVID-19 patients as non-COVID-19 people. To solve the problem, this paper first attempts to apply triplet loss and center loss to the field of COVID-19 image… More >

  • Open Access

    ARTICLE

    Application of Depth Learning Algorithm in Automatic Processing and Analysis of Sports Images

    Kai Yang*

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 317-332, 2023, DOI:10.32604/csse.2023.037266

    Abstract With the rapid development of sports, the number of sports images has increased dramatically. Intelligent and automatic processing and analysis of moving images are significant, which can not only facilitate users to quickly search and access moving images but also facilitate staff to store and manage moving image data and contribute to the intellectual development of the sports industry. In this paper, a method of table tennis identification and positioning based on a convolutional neural network is proposed, which solves the problem that the identification and positioning method based on color features and contour features is not adaptable in various… More >

  • Open Access

    ARTICLE

    Modeling & Evaluating the Performance of Convolutional Neural Networks for Classifying Steel Surface Defects

    Nadeem Jabbar Chaudhry1,*, M. Bilal Khan2, M. Javaid Iqbal1, Siddiqui Muhammad Yasir3

    Journal on Artificial Intelligence, Vol.4, No.4, pp. 245-259, 2022, DOI:10.32604/jai.2022.038875

    Abstract Recently, outstanding identification rates in image classification tasks were achieved by convolutional neural networks (CNNs). to use such skills, selective CNNs trained on a dataset of well-known images of metal surface defects captured with an RGB camera. Defects must be detected early to take timely corrective action due to production concerns. For image classification up till now, a model-based method has been utilized, which indicated the predicted reflection characteristics of surface defects in comparison to flaw-free surfaces. The problem of detecting steel surface defects has grown in importance as a result of the vast range of steel applications in end-product… More >

  • Open Access

    ARTICLE

    ResCD-FCN: Semantic Scene Change Detection Using Deep Neural Networks

    S. Eliza Femi Sherley1,*, J. M. Karthikeyan1, N. Bharath Raj1, R. Prabakaran2, A. Abinaya1, S. V. V. Lakshmi3

    Journal on Artificial Intelligence, Vol.4, No.4, pp. 215-227, 2022, DOI:10.32604/jai.2022.034931

    Abstract Semantic change detection is extension of change detection task in which it is not only used to identify the changed regions but also to analyze the land area semantic (labels/categories) details before and after the timelines are analyzed. Periodical land change analysis is used for many real time applications for valuation purposes. Majority of the research works are focused on Convolutional Neural Networks (CNN) which tries to analyze changes alone. Semantic information of changes appears to be missing, there by absence of communication between the different semantic timelines and changes detected over the region happens. To overcome this limitation, a… More >

  • Open Access

    ARTICLE

    Lightweight Method for Plant Disease Identification Using Deep Learning

    Jianbo Lu1,2,*, Ruxin Shi2, Jin Tong3, Wenqi Cheng4, Xiaoya Ma1,3, Xiaobin Liu2

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 525-544, 2023, DOI:10.32604/iasc.2023.038287

    Abstract In the deep learning approach for identifying plant diseases, the high complexity of the network model, the large number of parameters, and great computational effort make it challenging to deploy the model on terminal devices with limited computational resources. In this study, a lightweight method for plant diseases identification that is an improved version of the ShuffleNetV2 model is proposed. In the proposed model, the depthwise convolution in the basic module of ShuffleNetV2 is replaced with mixed depthwise convolution to capture crop pest images with different resolutions; the efficient channel attention module is added into the ShuffleNetV2 model network structure… More >

  • Open Access

    ARTICLE

    PF-YOLOv4-Tiny: Towards Infrared Target Detection on Embedded Platform

    Wenbo Li, Qi Wang*, Shang Gao

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 921-938, 2023, DOI:10.32604/iasc.2023.038257

    Abstract Infrared target detection models are more required than ever before to be deployed on embedded platforms, which requires models with less memory consumption and better real-time performance while considering accuracy. To address the above challenges, we propose a modified You Only Look Once (YOLO) algorithm PF-YOLOv4-Tiny. The algorithm incorporates spatial pyramidal pooling (SPP) and squeeze-and-excitation (SE) visual attention modules to enhance the target localization capability. The PANet-based-feature pyramid networks (P-FPN) are proposed to transfer semantic information and location information simultaneously to ameliorate detection accuracy. To lighten the network, the standard convolutions other than the backbone network are replaced with depthwise… More >

Displaying 1-10 on page 1 of 587. Per Page  

Share Link